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UNIX Time-Sharing System:

Preface

By T. H. CROWLEY
(Manuscript received April 18, 1978)

Since 1962, The Bell System Technical Journal has published over
90 articles on computer programming. Although that number is not
insignificant, it is only about 6 percent of all the articles published in
the B.S.T.J. during that period. Publications in the B.S.T.J. tend to
reflect the amount of activity in many areas of technology at Bell
Laboratories, but that has certainly not been true for computer pro-
gramming work. Better indicators of the importance of program-
ming for current Bell Laboratories work are the following:

(i) 25 percent of the technical staff spent more than 50 percent of
their time on programming, or related work, in 1977.

(ii) 25 percent of the professional staff recruited in 1977 majored
in computer science.

GO 40 percent of the employees entering the Bell Laboratories
Graduate Study Program in 1977 are majoring in computer
science.

Programming activities under way at Bell Laboratories cover a
very broad spectrum. They range from basic research on compiler-
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generating techniques to the maintenance of Bell Laboratories-
developed programs now in routine use at operating telephone com-
panies. They include writing of real-time control programs for
switching systems, development of time-shared text editing facili-
ties, and design of massive data-base systems. They involve work
on microprocessors, minicomputers, and maxicomputers. They
extend from the design of sophisticated programming tools to be
used only by experts to the delivery of program products to be used
by clerks in operating telephone companies. They include program-
ming for computers made by all the major computer hardware ven-
dors as well as programming for special-purpose computers designed
at Bell Laboratories and built by the Western Electric Company.

Because computer science is still in an early stage of development,
no well-formulated theoretical structure exists around which prob-
lems can be defined and results organized. "Elegance" is of prime
importance, but is not easily defined or described. Reliability and
maintainability are important, but they also are neither precisely
defined nor easily measured.

No single issue of the B.S.T.J. can characterize all of Bell Labora-
tories software activities. However, by using the UNIX* operating
system as a central theme, it has been possible to assemble a
number of related articles that do provide some idea of the impor-
tance of computer programming to Bell Laboratories. The original
design of the UNIX system was an elegant piece of work done in the
research area, and that design has proven useful in many applica-
tions. The range of applications described here typifies much of Bell
Laboratories software work with the notable omissions of real-time
programming for switching control systems and the design of very
large data-base systems. Given the growing importance of comput-
ers to the Bell System and the growing importance of programming
to the use of computers, it is certain that computer programming
will continue to grow in importance at Bell Laboratories.

* UNIX is a trademark of Bell Laboratories.
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UNIX Time- Sharing System:

Foreword

by M. D . McILROY , E. N. PINSON , and B . A. TAGUE
(Manuscript received March 17, 1978)

Intelligence ... is the faculty of making artificial objects, especially tools
to make tools. - Bergson

UNIX is a trademark for a family of computer operating systems

developed at Bell Laboratories. Over 300 of these systems, which

run on small to large minicomputers, are used in the Bell System for

program development, for support of telephone operations, for text

processing, and for general-purpose computing; even more have

been licensed to outside users. The papers in this issue describe

highlights of the UNIX family, some important uses, and some UNIX

software tools. They also attempt to convey a feeling for the partic-

ular style or outlook on program design that is both manifest in

UNIX software and promoted by it.

The UNIX story begins with Ken Thompson's work on a cast-off

PDP-7 minicomputer in 1969. He and the others who soon joined

him had one overriding objective: to create a computing environ-

ment where they themselves could comfortably and effectively pur-

sue their own work-programming research. The result is an

operating system of unusual simplicity, generality, and, above all,

intelligibility. A distinctive software style has grown upon this base.

UNIX software works smoothly together; elaborate computing tasks

are typically composed from loosely coupled small parts, often

software tools taken off the shelf.

The growth and flowering of UNIX as a highly effective and reliable
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time-sharing system are detailed in the prizewinning ACM paper by
Ritchie and Thompson that has been updated for this volume. That
paper describes the operating system proper and lists the important
utility programs that have been adopted by descendant systems as
well. There is no more concise summary of the UNIX time-sharing
system than the oft-quoted passage from Ritchie and Thompson:

It offers a number of features seldom found even in larger operating systems,

including
(i) A hierarchical file system incorporating demountable volumes,

(ii) Compatible file, device, and inter-process I/O,

(iii) The ability to initiate asynchronous processes,

(iv) System command language selectable on a per-user basis,

(v) Over 100 subsystems including a dozen languages.

Implementation details are covered in a separate paper by Thomp-
son. Matters of efficiency and design philosophy are considered in a
retrospective paper by Ritchie.

The most visible system interface is the "shell," or command
language interpreter, through which other programs are called into
execution singly or in combination. The shell, described by
Bourne, is actually a very high level programming language that
talks about programs and files. Particularly noteworthy are its nota-
tions for input-output connections. By making it easy to combine
programs, the shell fosters small, coherent software modules.

The UNIX system and most software that runs under it are pro-
grammed in the general-purpose procedural language C. C provides
almost the full capability of popular instruction sets in a setting of
structured code, structured data, and modular compilation. C is
easy to write and (when well-written) easy to read. The language
and the philosophy behind it are covered by Ritchie, Johnson, Lesk,

and Kernighan.
Until mid-1977, the UNIX operating system and its variants ran

only on computers of the Digital Equipment Corporation PDP-11
family. In an interesting exercise in portability, Johnson and
Ritchie exploited the machine-independence of C to move the
operating system and the bulk of its software to a quite different
Interdata machine. Careful parameterization and some repackaging
have made it possible to use largely identical source code for both

machines.

Variations

Three papers by Bayer, Lycklama, and Christensen describe
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variations on the UNIX operating system that were developed to
accommodate real-time processing , microprocessor systems, and
laboratory support applications . They were motivated by the desire
to retain the benefits of the UNIX system for program development
while offering different trade -offs to the user in real - time response,
hardware requirements , and resource management for production
programs . Many UNIX utilities-especially those useful for writing
programs and processing text-will run under any of these variant
systems without change.

The MERT operating system (Lycklama and Bayer ) provides a
generalized kernel that permits extensive interprocess communica-
tion and direct user control of peripherals , scheduling, and storage
management . Applications with stringent requirements for real-
time response , and even different operating systems ( in particular,
UNIX) can be operated simultaneously under the MERT kernel.

The microprocessor version of the UNIX operating system (Lyck-
lama) and the Satellite Processing System that shares process execu-
tion between one big and one tiny machine (Lycklama and
Christensen) involve other trade-offs between efficiency and
resource requirements. Both also may be looked upon as vehicles
for applications in which one wishes to delegate some sticky part of
the job- frequently involving real - time demands - to a dedicated
machine . The application described later in the issue by Won-
siewicz , Storm , and Sieber is a particularly interesting example
involving UNIX, the microprocessor system , and the Satellite Pro-
cessing System.

Software Tools

Perhaps the most widely used UNIX programs are the utilities for
the editing , transformation , analysis , and publication of text of all
sorts. Indeed , the text-processing utilities covered by Kernighan,
Lesk, and Ossanna were used to produce this issue of the B .S.T.J.
Some more unusual applications that become possible where text
processors and plenty of text are ready at hand are described by
McMahon , Morris, and Cherry.

UNIX utilities are usually thought of as tools-sharply honed pro-
grams that help with generic data processing tasks. Tools were
often invented to help with the development of UNIX programs and
were continually improved by much trial , error, discussion, and
redesign, as was the operating system itself . Tools may be used in
combination to perform or construct specific applications.
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Sophisticated tools to make tools have evolved. The basic
typesetting programs nroff and troff covered by Kernighan, Lesk,
and Ossanna help experts define the layouts for classes of docu-
ments; the resulting packages exhibit only what is needed for one
particular type of document and are easy for nonspecialists to use.
Johnson and Lesk describe Yacc and Lex, tools based in formal
language theory that systematize the construction of compiler "front
ends." Language processors built with the aid of these tools are typ-
ically more precisely defined and freer from error than hand-built
counterparts.

The UNIX system was originally designed to help build research
software. What worked well in a programming laboratory also
worked well on modest projects to develop minicomputer-based sys-
tems in support of telephone company operations. Such projects are
treated in the final group of papers and are more fully introduced by
Luderer, Maranzano, and Tague. The strengths of this environ-
ment proved equally attractive to large programming projects build-
ing applications for large computers with operating systems that
were less tractable for program development. The PWB/UNIX exten-
sions discussed by Dolotta, Haight, and Mashey provide such pro-
jects with a "front end" for comfortable and effective program
development and documentation, together with administrative tools
to handle massive projects.

Style

A number of maxims have gained currency among the builders
and users of the UNIX system to explain and promote its characteris-
tic style:

(i) Make each program do one thing well. To do a new job,
build afresh rather than complicate old programs by adding
new "features."

(ii) Expect the output of every program to become the input to

another, as yet unknown, program. Don't clutter output

with extraneous information. Avoid stringently columnar or

binary input formats. Don't insist on interactive input.

(iii) Design and build software, even operating systems, to be
tried early, ideally within weeks. Don't hesitate to throw
away the clumsy parts and rebuild them.

(iv) Use tools in preference to unskilled help to lighten a
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programming task, even if you have to detour to build the
tools and expect to throw some of them out after you've
finished using them.

Illustrations of these maxims are legion:

(i) Surprising to outsiders is the fact that UNIX compilers pro-
duce no listings: printing can be done better and more flexi-
bly by a separate program.

(ii) Unexpected uses of files abound: programs may be compiled
to be run and also typeset to be published in a book from the
same text without human intervention; text intended for
publication serves as grist for statistical studies of English to
help in data compression or cryptography; mailing lists turn
into maps. The prevalence of free-format text, even in
"data" files, makes the text-processing utilities useful for
many strictly data processing functions such as shuffling
fields, counting, or collating.

(iii) The UNIX system and the C language themselves evolved by
deliberate steps from early working models that had at most
a few man-months invested in them. Both have been fully
recoded several times by the same people who designed
them, with as much mechanical aid as possible.

(iv) The use of tools instead of labor is nicely illustrated by
typesetting. When a paper needs a new layout for some rea-
son, the typographic conventions for paragraphs, subhead-
ings, etc. are entered in one place, then the paper is run off
in the new shape without retyping a single word.

To many, the UNIX systems embody Schumacher's dictum,
"Small is beautiful." On the other hand it has been argued by
Brooks in The Mythical Man Month, for example, that small is
unreal; the working of a handful of people doesn't extrapolate to
the world of big jobs. We agree only in part, for the present
volume demonstrates with unusual force another important factor:
intelligently applied computing technology can compress jobs that
used to be big to manageable size. The first system had only about
5 man-years' work in it (including operating system, assembler,
Fortran, and many other utilities) when it began to be used for Bell
System projects. It was, to be sure, a taut package that lacked the
gamut of libraries, languages, and support for peripheral equipment
typical of a large commercial system. But the base was unusually
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pliable and responsive; new facilities usually could be added with
much less work than is required by corresponding features in other
systems.

The UNIX operating system, the C programming language, and the
many tools and techniques developed in this environment are
finding extensive use within the Bell System and at universities,
government laboratories, and other commercial installations. The
style of computing encouraged by this environment is influencing a
new generation of programmers and system designers. This,
perhaps, is the most exciting part of the UNIX story, for the
increased productivity fostered by a friendly environment and qual-
ity tools is essential to meet ever-increasing demands for software.
UNIX is not the end of the road in operating system innovations, but
it has been a significant step that Bell Laboratories people are proud
to have originated.
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The UNIX Time-Sharing Systemt

by D. M. RITCHIE and K. THOMPSON
(Manuscript received April 3, 1978)

UNIX * is a general-purpose, multi-user , interactive operating system for

the larger Digital Equipment Corporation PDP-11 and the Interdata 8/32

computers. It offers a number of features seldom found even in larger

operating systems, including

(i) A hierarchical file system incorporating demountable volumes,

(ii) Compatible file, device, and inter-process I/O,

(iii) The ability to initiate asynchronous processes,
(iv) System command language selectable on a per -user basis,
(v) Over 100 subsystems including a dozen languages,
(vi) High degree of portability.

This paper discusses the nature and implementation of the file system

and of the user command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system.
The earliest (circa 1969-70) ran on the Digital Equipment Corpora-
tion PDP-7 and -9 computers. The second version ran on the unpro-

t Copyright 1974, Association for Computing Machinery, Inc., reprinted by permis-
sion. This is a revised version of an article that appeared in Communications of the
ACM, 17, No. 7 (July 1974), pp. 365-375. That article was a revised version of a pa-
per presented at the Fourth ACM Symposium on Operating Systems Principles, IBM
Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17,
1973.
* UNIX is a trademark of Bell Laboratories.
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tected PDP-11/20 computer. The third incorporated multiprogram-
ming and ran on the PDP-11/34, /40, /45, /60, and /70 computers;
it is the one described in the previously published version of this
paper, and is also the most widely used today. This paper describes
only the fourth, current system that runs on the PDP-11/70 and the
Interdata 8/32 computers. In fact, the differences among the vari-
ous systems is rather small; most of the revisions made to the origi-
nally published version of this paper, aside from those concerned
with style, had to do with details of the implementation of the file
system.

Since PDP-11 UNIX became operational in February, 1971, over
600 installations have been put into service. Most of them are
engaged in applications such as computer science education, the
preparation and formatting of documents and other textual material,
the collection and processing of trouble data from various switching
machines within the Bell System, and recording and checking tele-
phone service orders. Our own installation is used mainly for
research in operating systems, languages, computer networks, and
other topics in computer science, and also for document preparation.

Perhaps the most important achievement of UNIX is to demon-
strate that a powerful operating system for interactive use need not
be expensive either in equipment or in human effort: it can run on
hardware costing as little as $40,000, and less than two man-years
were spent on the main system software. We hope, however, that
users find that the most important characteristics of the system are
its simplicity, elegance, and ease of use.

Besides the operating system proper; some major programs avail-
able under UNIX are

C compiler
Text editor based on QED1
Assembler , linking loader , symbolic debugger
Phototypesetting and equation setting programs2.3
Dozens of languages including Fortran 77, Basic, Sno-

bol, APL, Algol 68 , M6, TMG, Pascal

There is a host of maintenance , utility, recreation and novelty pro-
grams, all written locally. The UNIX user community, which
numbers in the thousands , has contributed many more programs
and languages . It is worth noting that the system is totally self-
supporting . All UNIX software is maintained on the system; like-
wise, this paper and all other documents in this issue were generated
and formatted by the UNIX editor and text formatting programs.
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11. HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-11/70 on which the Research UNIX system is installed is a
16-bit word (8-bit byte) computer with 768K bytes of core memory;
the system kernel occupies 90K bytes about equally divided between
code and data tables. This system, however, includes a very large
number of device drivers and enjoys a generous allotment of space
for I/O buffers and system tables; a minimal system capable of run-
ning the software mentioned above can require as little as 96K bytes
of core altogether. There are even larger installations; see the
description of the PWB/UNIX systems,4' 5 for example. There are also
much smaller, though somewhat restricted, versions of the system.6

Our own PDP-11 has two 200-Mb moving-head disks for file sys-
tem storage and swapping. There are 20 variable-speed communica-
tions interfaces attached to 300- and 1200-baud data sets, and an
additional 12 communication lines hard-wired to 9600-baud termi-
nals and satellite computers. There are also several 2400- and
4800-baud synchronous communication interfaces used for
machine-to-machine file transfer. Finally, there is a variety of mis-
cellaneous devices including nine-track magnetic tape, a line printer,
a voice synthesizer, a phototypesetter, a digital switching network,
and a chess machine.

The preponderance of UNIX software is written in the above-
mentioned C language.? Early versions of the operating system
were written in assembly language, but during the summer of 1973,
it was rewritten in C. The size of the new system was about one-
third greater than that of the old. Since the new system not only
became much easier to understand and to modify but also included
many functional improvements, including multiprogramming and
the ability to share reentrant code among several user programs, we
consider this increase in size quite acceptable.

III. THE FILE SYSTEM

The most important role of the system is to provide a file system.
From the point of view of the user, there are three kinds of files:
ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for
example, symbolic or binary (object) programs. No particular
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structuring is expected by the system. A file of text consists simply
of a string of characters, with lines demarcated by the newline char-
acter. Binary programs are sequences of words as they will appear in
core memory when the program starts executing. A few user pro-
grams manipulate files with more structure; for example, the assem-
bler generates, and the loader expects, an object file in a particular
format. However, the structure of files is controlled by the pro-
grams that use them, not by the system.

3.2 Directories

Directories provide the mapping between the names of files and
the files themselves, and thus induce a structure on the file system
as a whole. Each user has a directory of his own files; he may also
create subdirectories to contain groups of files conveniently treated
together. A directory behaves exactly like an ordinary file except
that it cannot be written on by unprivileged programs, so that the
system controls the contents of directories. However, anyone with
appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of
these is the root directory. All files in the system can be found by
tracing a path through a chain of directories until the desired file is
reached. The starting point for such searches is often the root.
Other system directories contain all the programs provided for gen-
eral use; that is, all the commands. As will be seen, however, it is
by no means necessary that a program reside in one of these direc-
tories for it to be executed.

Files are named by sequences of 14 or fewer characters. When
the name of a file is specified to the system, it may be in the form
of a path name, which is a sequence of directory names separated by
slashes, "/", and ending in a file name. If the sequence begins with
a slash, the search begins in the root directory. The name
/alpha /beta/gamma causes the system to search the root for direc-
tory alpha , then to search alpha for beta, finally to find gamma in
beta. gamma may be an ordinary file, a directory, or a special file.
As a limiting case, the name "/" refers to the root itself.

A path name not starting with "/" causes the system to begin the
search in the user's current directory. Thus, the name alpha/beta
specifies the file named beta in subdirectory alpha of the current
directory. The simplest kind of name, for example , alpha , refers to
a file that itself is found in the current directory. As another limit-
ing case, the null file name refers to the current directory.

1908 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978



The same non-directory file may appear in several directories
under possibly different names. This feature is called linking; a

directory entry for a file is sometimes called a link. The UNIX sys-
tem differs from other systems in which linking is permitted in that
all links to a file have equal status. That is, a file does not exist
within a particular directory; the directory entry for a file consists
merely of its name and a pointer to the information actually describ-
ing the file. Thus a file exists independently of any directory entry,
although in practice a file is made to disappear along with the last
link to it.

Each directory always has at least two entries. The name " . " in
each directory refers to the directory itself. Thus a program may
read the current directory under the name ". " without knowing its
complete path name. The name ".. " by convention refers to the
parent of the directory in which it appears, that is, to the directory
in which it was created.

The directory structure is constrained to have the form of a rooted
tree. Except for the special entries " . " and " .. ", each directory
must appear as an entry in exactly one other directory, which is its
parent. The reason for this is to simplify the writing of programs
that visit subtrees of the directory structure, and more important, to
avoid the separation of portions of the hierarchy. If arbitrary links
to directories were permitted, it would be quite difficult to detect
when the last connection from the root to a directory was severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file
system. Each supported I/O device is associated with at least one
such file. Special files are read and written just like ordinary disk
files, but requests to read or write result in activation of the associ-
ated device. An entry for each special file resides in directory /dev,
although a link may be made to one of these files just as it may to
an ordinary file. Thus, for example, to write on a magnetic tape one
may write on the file /dev/mt. Special files exist for each communi-
cation line, each disk, each tape drive, and for physical main
memory. Of course, the active disks and the memory special file are
protected from indiscriminate access.

There is a threefold advantage in treating I/O devices this way:
file and device I/O are as similar as possible; file and device names
have the same syntax and meaning, so that a program expecting a
file name as a parameter can be passed a device name; finally,
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special files are subject to the same protection mechanism as regular
files.

3.4 Removable file systems

Although the root of the file system is always stored on the same
device, it is not necessary that the entire file system hierarchy reside
on this device. There is a mount system request with two argu-
ments: the name of an existing ordinary file, and the name of a spe-
cial file whose associated storage volume (e.g., a disk pack) should
have the structure of an independent file system containing its own
directory hierarchy. The effect of mount is to cause references to
the heretofore ordinary file to refer instead to the root directory of
the file system on the removable volume. In effect, mount replaces
a leaf of the hierarchy tree (the ordinary file) by a whole new sub-
tree (the hierarchy stored on the removable volume). After the
mount, there is virtually no distinction between files on the remov-
able volume and those in the permanent file system. In our installa-
tion, for example, the root directory resides on a small partition of
one of our disk drives, while the other drive, which contains the
user's files, is mounted by the system initialization sequence. A
mountable file system is generated by writing on its corresponding
special file. A utility program is available to create an empty file sys-
tem, or one may simply copy an existing file system.

There is only one exception to the rule of identical treatment of
files on different devices: no link may exist between one file system
hierarchy and another. This restriction is enforced so as to avoid
the elaborate bookkeeping that would otherwise be required to
assure removal of the links whenever the removable volume is
dismounted.

3.5 Protection

Although the access control scheme is quite simple, it has some
unusual features. Each user of the system is assigned a unique user
identification number. When a file is created, it is marked with the
user ID of its owner. Also given for new files is a set of ten protec-
tion bits. Nine of these specify independently read, write, and exe-
cute permission for the owner of the file, for other members of his
group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user
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identification (hereafter, user ID) of the current user to that of the
creator of the file whenever the file is executed as a program. This
change in user ID is effective only during the execution of the pro-
gram that calls for it. The set-user-ID feature provides for privileged
programs that may use files inaccessible to other users. For exam-
ple, a program may keep an accounting file that should neither be
read nor changed except by the program itself. If the set-user-ID bit
is on for the program, it may access the file although this access
might be forbidden to other programs invoked by the given
program's user. Since the actual user ID of the invoker of any pro-
gram is always available, set-user-ID programs may take any meas-
ures desired to satisfy themselves as to their invoker's credentials.
This mechanism is used to allow users to execute the carefully writ-
ten commands that call privileged system entries. For example,
there is a system entry invokable only by the "super-user" (below)
that creates an empty directory. As indicated above, directories are
expected to have entries for ". " and ".. ". The command which
creates a directory is owned by the super-user and has the set-user-
ID bit set. After it checks its invoker's authorization to create the
specified directory, it creates it and makes the entries for " . " and

Because anyone may set the set-user-ID bit on one of his own
files, this mechanism is generally available without administrative
intervention. For example, this protection scheme easily solves the
moo accounting problem posed by "Aleph-null."8

The system recognizes one particular user ID (that of the "super-
user") as exempt from the usual constraints on file access; thus (for
example), programs may be written to dump and reload the file sys-
tem without unwanted interference from the protection system.

3.6 I/O calls

The system calls to do I/O are designed to eliminate the
differences between the various devices and styles of access. There
is no distinction between "random" and "sequential" I/O, nor is any
logical record size imposed by the system. The size of an ordinary
file is determined by the number of bytes written on it; no predeter-
mination of the size of a file is necessary or possible.

To illustrate the essentials of I/O, some of the basic calls are sum-
marized below in an anonymous language that will indicate the
required parameters without getting into the underlying complexi-
ties. Each call to the system may potentially result in an error
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into a system table (the i-list) stored in a known part of the device
on which the directory resides. The entry found thereby (the file's
i-node) contains the description of the file:

(i) the user and group-ID of its owner
(ii) its protection bits
(iii) the physical disk or tape addresses for the file contents
(iv) its size
(v) time of creation, last use , and last modification
(vi) the number of links to the file, that is, the number of times it

appears in a directory
(vii) a code indicating whether the file is a directory, an ordinary

file, or a special file.

The purpose of an open or create system call is to turn the path
name given by the user into an i-number by searching the explicitly
or implicitly named directories. Once a file is open, its device, i-
number, and read/write pointer are stored in a system table indexed
by the file descriptor returned by the open or create . Thus, during
a subsequent call to read or write the file, the descriptor may be
easily related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a
directory entry is made that contains the name of the file and the i-
node number. Making a link to an existing file involves creating a
directory entry with the new name, copying the i-number from the
original file entry, and incrementing the link-count field of the i-
node. Removing (deleting) a file is done by decrementing the link-
count of the i-node specified by its directory entry and erasing the
directory entry. If the link-count drops to 0, any disk blocks in the
file are freed and the i-node is de-allocated.

The space on all disks that contain a file system is divided into a
number of 512-byte blocks logically addressed from 0 up to a limit
that depends on the device. There is space in the i-node of each file
for 13 device addresses. For nonspecial files, the first 10 device
addresses point at the first 10 blocks of the file. If the file is larger
than 10 blocks, the 11 device address points to an indirect block
containing up to 128 addresses of additional blocks in the file. Still
larger files use the twelfth device address of the i-node to point to a
double-indirect block naming 128 indirect blocks, each pointing to
128 blocks of the file. If required, the thirteenth device address is a
triple-indirect block. Thus files may conceptually grow to
[(10+128+128'+128')-512)] bytes. Once opened, bytes num-
bered below 5120 can be read with a single disk access; bytes in the



range 5120 to 70,656 require two accesses; bytes in the range 70,656
to 8,459,264 require three accesses; bytes from there to the largest
file (1,082,201,088) require four accesses. In practice, a device
cache mechanism (see below) proves effective in eliminating most
of the indirect fetches.

The foregoing discussion applies to ordinary files. When an I/O
request is made to a file whose i-node indicates that it is special, the
last 12 device address words are immaterial, and the first specifies an
internal device name, which is interpreted as a pair of numbers
representing, respectively, a device type and subdevice number.
The device type indicates which system routine will deal with I/O on
that device; the subdevice number selects, for example, a disk drive
attached to a particular controller or one of several similar terminal
interfaces.

In this environment, the implementation of the mount system call
(Section 3.4) is quite straightforward. mount maintains a system
table whose argument is the i-number and device name of the ordi-
nary file specified during the mount , and whose corresponding value
is the device name of the indicated special file. This table is
searched for each i-number/device pair that turns up while a path
name is being scanned during an open or create ; if a match is
found, the i-number is replaced by the i-number of the root direc-
tory and the device name is replaced by the table value.

To the user, both reading and writing of files appear to be syn-
chronous and unbuffered. That is, immediately after return from a
read call the data are available; conversely, after a write the user's
workspace may be reused. In fact, the system maintains a rather
complicated buffering mechanism that reduces greatly the number of
I/O operations required to access a file. Suppose a write call is
made specifying transmission of a single byte. The system will
search its buffers to see whether the affected disk block currently
resides in main memory; if not, it will be read in from the device.
Then the affected byte is replaced in the buffer and an entry is made
in a list of blocks to be written. The return from the write call may
then take place, although the actual I/O may not be completed until
a later time. Conversely, if a single byte is read, the system deter-
mines whether the secondary storage block in which the byte is
located is already in one of the system's buffers; if so, the byte can
be returned immediately. If not, the block is read into a buffer and
the byte picked out.

The system recognizes when a program has made accesses to
sequential blocks of a file, and asynchronously pre-reads the next

UNIX TIME -SHARING SYSTEM 1915



block. This significantly reduces the running time of most programs
while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an
advantage over a program that reads or writes a single byte at a
time, but the gain is not immense; it comes mainly from the
avoidance of system overhead. If a program is used rarely or does
no great volume of I/O, it may quite reasonably read and write in
units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice,
this method of organizing the file system has proved quite reliable
and easy to deal with. To the system itself, one of its strengths is
the fact that each file has a short, unambiguous name related in a
simple way to the protection, addressing, and other information
needed to access the file. It also permits a quite simple and rapid
algorithm for checking the consistency of a file system, for example,
verification that the portions of each device containing useful infor-
mation and those free to be allocated are disjoint and together
exhaust the space on the device. This algorithm is independent of
the directory hierarchy, because it need only scan the linearly organ-
ized i-list. At the same time the notion of the i-list induces certain
peculiarities not found in other file system organizations. For exam-
ple, there is the question of who is to be charged for the space a file
occupies, because all directory entries for a file have equal status.
Charging the owner of a file is unfair in general, for one user may
create a file, another may link to it, and the first user may delete the
file. The first user is still the owner of the file, but it should be
charged to the second user. The simplest reasonably fair algorithm
seems to be to spread the charges equally among users who have
links to a file. Many installations avoid the issue by not charging
any fees at all.

V. PROCESSES AND IMAGES

An image is a computer execution environment. It includes a
memory image, general register values, status of open files, current
directory and the like. An image is the current state of a pseudo-
computer.

A process is the execution of an image. While the processor is
executing on behalf of a process, the image must reside in main
memory; during the execution of other processes it remains in main
memory unless the appearance of an active, higher-priority process
forces it to be swapped out to the disk.
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The user-memory part of an image is divided into three logical
segments. The program text segment begins at location 0 in the vir-
tual address space. During execution, this segment is write-
protected and a single copy of it is shared among all processes exe-
cuting the same program. At the first hardware protection byte
boundary above the program text segment in the virtual address
space begins a non-shared, writable data segment, the size of which
may be extended by a system call. Starting at the highest address in
the virtual address space is a stack segment, which automatically
grows downward as the stack pointer fluctuates.

5.1 Processes

Except while the system is bootstrapping itself into operation, a
new process can come into existence only by use of the fork system
call:

processid = fork ( )

When fork is executed, the process splits into two independently
executing processes. The two processes have independent copies of
the original memory image, and share all open files. The new
processes differ only in that one is considered the parent process: in
the parent, the returned processid actually identifies the child pro-
cess and is never 0, while in the child, the returned value is always
0.

Because the values returned by fork in the parent and child pro-
cess are distinguishable, each process may determine whether it is
the parent or child.

5.2 Pipes

Processes may communicate with related processes using the same
system read and write calls that are used for file-system I/O. The
call:

filep = pipe ( )

returns a file descriptor filep and creates an inter-process channel
called a pipe. This channel, like other open files, is passed from
parent to child process in the image by the fork call. A read using a
pipe file descriptor waits until another process writes using the file
descriptor for the same pipe. At this point, data are passed between
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the images of the two processes. Neither process need know that a
pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valu-
able tool (see Section 6.2), it is not a completely general mechan-
ism, because the pipe must be set up by a common ancestor of the
processes involved.

5.3 Execution of programs

Another major system primitive is invoked by

execute ( file, arg1, arg2, ... , argo )

which requests the system to read in and execute the program
named by file, passing it string arguments argl , arg2, ... , argn.
All the code and data in the process invoking execute is replaced
from the file, but open files, current directory, and inter-process
relationships are unaltered. Only if the call fails, for example
because file could not be found or because its execute-permission
bit was not set, does a return take place from the execute primitive;
it resembles a "jump" machine instruction rather than a subroutine
call.

5.4 Process synchronization

Another process control system call:

processid = wait(status)

causes its caller to suspend execution until one of its children has
completed execution. Then wait returns the processid of the ter-
minated process. An error return is taken if the calling process has
no descendants. Certain status from the child process is also avail-
able.

5.5 Termination

Lastly:

exit (status )

terminates a process, destroys its image, closes its open files, and
generally obliterates it. The parent is notified through the wait
primitive, and status is made available to it. Processes may also
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terminate as a result of various illegal actions or user -generated sig-
nals (Section VII below).

VI. THE SHELL

For most users, communication with the system is carried on with
the aid of a program called the shell. The shell is a command-line
interpreter: it reads lines typed by the user and interprets them as
requests to execute other programs. (The shell is described fully
elsewhere,9 so this section will discuss only the theory of its opera-
tion.) In simplest form, a command line consists of the command
name followed by arguments to the command, all separated by

spaces:

command arg, arg2 ... argn

The shell splits up the command name and the arguments into
separate strings. Then a file with name command is sought; com-
mand may be a path name including the "/" character to specify
any file in the system . If command is found, it is brought into
memory and executed. The arguments collected by the shell are
accessible to the command. When the command is finished, the
shell resumes its own execution, and indicates its readiness to accept
another command by typing a prompt character.

If file command cannot be found, the shell generally prefixes a

string such as /bin/ to command and attempts again to find the
file. Directory /bin contains commands intended to be generally
used. (The sequence of directories to be searched may be changed
by user request.)

6.1 Standard I/O

The discussion of I/O in Section III above seems to imply that
every file used by a program must be opened or created by the pro-
gram in order to get a file descriptor for the file. Programs executed
by the shell, however, start off with three open files with file
descriptors 0, 1, and 2. As such a program begins execution, file 1
is open for writing, and is best understood as the standard output
file. Except under circumstances indicated below, this file is the
user's terminal. Thus programs that wish to write informative infor-
mation ordinarily use file descriptor 1. Conversely, file 0 starts off
open for reading, and programs that wish to read messages typed by
the user read this file.
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The shell is able to change the standard assignments of these file
descriptors from the user's terminal printer and keyboard. If one of
the arguments to a command is prefixed by ">", file descriptor 1
will, for the duration of the command, refer to the file named after
the ">". For example:

Is

ordinarily lists, on the typewriter, the names of the files in the
current directory. The command:

Is >there

creates a file called there and places the listing there. Thus the
argument > there means "place output on there ." On the other
hand:

ed

ordinarily enters the editor, which takes requests from the user via
his keyboard. The command

ed <script

interprets script as a file of editor commands; thus <script means
"take input from script."

Although the file name following "<" or ">" appears to be an
argument to the command, in fact it is interpreted completely by the
shell and is not passed to the command at all. Thus no special cod-
ing to handle I/O redirection is needed within each command; the
command need merely use the standard file descriptors 0 and 1
where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the termi-
nal output stream. When an output-diversion request with ">" is
specified, file 2 remains attached to the terminal, so that commands
may produce diagnostic messages that do not silently end up in the
output file.

6.2 Filters

An extension of the standard I/O notion is used to direct output
from one command to the input of another. A sequence of com-
mands separated by vertical bars causes the shell to execute all the
commands simultaneously and to arrange that the standard output of
each command be delivered to the standard input of the next com-
mand in the sequence. Thus in the command line:
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is I pr -2 1 opr

Is lists the names of the files in the current directory; its output is
passed to pr, which paginates its input with dated headings. (The
argument "-2" requests double-column output.) Likewise, the out-
put from pr is input to opr; this command spools its input onto a
file for off-line printing.

This procedure could have been carried out more clumsily by:

Is >templ

pr -2 <templ >temp2

opr <temp2

followed by removal of the temporary files. In the absence of the
ability to redirect output and input, a still clumsier method would
have been to require the Is command to accept user requests to
paginate its output, to print in multi-column format, and to arrange
that its output be delivered off-line. Actually it would be surprising,
and in fact unwise for efficiency reasons, to expect authors of com-
mands such as Is to provide such a wide variety of output options.

A program such as pr which copies its standard input to its stan-
dard output (with processing) is called a filter. Some filters that we
have found useful perform character transliteration, selection of
lines according to a pattern, sorting of the input, and encryption and
decryption.

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward.
Commands need not be on different lines; instead they may be
separated by semicolons:

Is; ed

will first list the contents of the current directory, then enter the
editor.

A related feature is more interesting. If a command is followed
by "&," the shell will not wait for the command to finish before
prompting again; instead, it is ready immediately to accept a new
command. For example:

as source >output &

causes source to be assembled, with diagnostic output going to out-
put; no matter how long the assembly takes, the shell returns
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immediately. When the shell does not wait for the completion of a
command, the identification number of the process running that
command is printed. This identification may be used to wait for the
completion of the command or to terminate it. The "&" may be
used several times in a line:

as source >output & Is >files &

does both the assembly and the listing in the background. In these
examples, an output file other than the terminal was provided; if
this had not been done, the outputs of the various commands would
have been intermingled.

The shell also allows parentheses in the above operations. For
example:

(date; Is) >x &

writes the current date and time followed by a list of the current
directory onto the file x. The shell also returns immediately for
another request.

6.4 The shell as a command ; command files

The shell is itself a command, and may be called recursively.
Suppose file tryout contains the lines:

as source
my a.out testprog
testprog

The my command causes the file a.out to be renamed testprog.
a.out is the (binary) output of the assembler, ready to be executed.
Thus if the three lines above were typed on the keyboard , source
would be assembled, the resulting program renamed testprog, and
testprog executed. When the lines are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.
The shell has further capabilities, including the ability to substi-

tute parameters and to construct argument lists from a specified sub-
set of the file names in a directory. It also provides general condi-
tional and looping constructions.

6.5 Implementation of the shell

The outline of the operation of the shell can now be understood.
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Most of the time, the shell is waiting for the user to type a com-
mand. When the newline character ending the line is typed, the
shell's read call returns. The shell analyzes the command line, put-
ting the arguments in a form appropriate for execute . Then fork is
called. The child process, whose code of course is still that of the
shell, attempts to perform an execute with the appropriate argu-
ments. If successful, this will bring in and start execution of the
program whose name was given. Meanwhile, the other process
resulting from the fork, which is the parent process, waits for the
child process to die. When this happens, the shell knows the com-
mand is finished, so it types its prompt and reads the keyboard to
obtain another command.

Given this framework, the implementation of background
processes is trivial; whenever a command line contains "&," the
shell merely refrains from waiting for the process that it created to
execute the command.

Happily, all of this mechanism meshes very nicely with the notion
of standard input and output files. When a process is created by the
fork primitive, it inherits not only the memory image of its parent
but also all the files currently open in its parent, including those
with file descriptors 0, 1, and 2. The shell, of course, uses these
files to read command lines and to write its prompts and diagnostics,
and in the ordinary case its children-the command programs-
inherit them automatically. When an argument with "<" or ">" is
given, however, the offspring process, just before it performs exe-
cute, makes the standard I/O file descriptor (0 or 1, respectively)
refer to the named file. This is easy because, by agreement, the
smallest unused file descriptor is assigned when a new file is opened
(or created); it is only necessary to close file 0 (or 1) and open the
named file. Because the process in which the command program
runs simply terminates when it is through, the association between a
file specified after "<" or ">" and file descriptor 0 or 1 is ended
automatically when the process dies. Therefore the shell need not
know the actual names of the files that are its own standard input
and output, because it need never reopen them.

Filters are straightforward extensions of standard I/O redirection
with pipes used instead of files.

In ordinary circumstances, the main loop of the shell never ter-
minates. (The main loop includes the branch of the return from
fork belonging to the parent process; that is, the branch that does a
wait, then reads another command line.) The one thing that causes
the shell to terminate is discovering an end-of-file condition on its
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input file. Thus, when the shell is executed as a command with a
given input file, as in:

sh <comfile

the commands in comfile will be executed until the end of comfile
is reached; then the instance of the shell invoked by sh will ter-
minate. Because this shell process is the child of another instance of
the shell, the wait executed in the latter will return, and another
command may then be processed.

6.6 Initialization

The instances of the shell to which users type commands are
themselves children of another process. The last step in the initiali-
zation of the system is the creation of a single process and the invo-
cation (via execute) of a program called init. The role of init is to
create one process for each terminal channel. The various subin-
stances of init open the appropriate terminals for input and output
on files 0, 1, and 2, waiting, if necessary, for carrier to be esta-
blished on dial-up lines. Then a message is typed out requesting
that the user log in. When the user types a name or other
identification, the appropriate instance of init wakes up, receives the
log-in line, and reads a password file. If the user's name is found,
and if he is able to supply the correct password, init changes to the
user's default current directory, sets the process's user ID to that of
the person logging in, and performs an execute of the shell. At
this point, the shell is ready to receive commands and the logging-in
protocol is complete.

Meanwhile, the mainstream path of init (the parent of all the
subinstances of itself that will later become shells) does a wait. If
one of the child processes terminates, either because a shell found
an end of file or because a user typed an incorrect name or pass-
word, this path of init simply recreates the defunct process, which in
turn reopens the appropriate input and output files and types
another log-in message. Thus a user may log out simply by typing
the end-of-file sequence to the shell.

6.7 Other programs as shell

The shell as described above is designed to allow users full access
to the facilities of the system, because it will invoke the execution
of any program with appropriate protection mode. Sometimes,
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however, a different interface to the system is desirable, and this
feature is easily arranged for.

Recall that after a user has successfully logged in by supplying a
name and password, init ordinarily invokes the shell to interpret
command lines. The user's entry in the password file may contain
the name of a program to be invoked after log-in instead of the
shell. This program is free to interpret the user' s messages in any
way it wishes.

For example, the password file entries for users of a secretarial
editing system might specify that the editor ed is to be used instead
of the shell. Thus when users of the editing system log in, they are
inside the editor and can begin work immediately; also, they can be
prevented from invoking programs not intended for their use. In
practice, it has proved desirable to allow a temporary escape from
the editor to execute the formatting program and other utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) avail-
able on the system illustrate a much more severely restricted
environment. For each of these, an entry exists in the password file
specifying that the appropriate game-playing program is to be
invoked instead of the shell. People who log in as a player of one of
these games find themselves limited to the game and unable to
investigate the (presumably more interesting) offerings of the UNIX
system as a whole.

VII. TRAPS

The PDP-11 hardware detects a number of program faults, such as
references to non-existent memory, unimplemented instructions,
and odd addresses used where an even address is required. Such
faults cause the processor to trap to a system routine. Unless other
arrangements have been made, an illegal action causes the system to
terminate the process and to write its image on file core in the
current directory. A debugger can be used to determine the state of
the program at the time of the fault.

Programs that are looping, that produce unwanted output, or
about which the user has second thoughts may be halted by the use
of the interrupt signal, which is generated by typing the "delete"
character. Unless special action has been taken, this signal simply
causes the program to cease execution without producing a core file.
There is also a quit signal used to force an image file to be pro-
duced. Thus programs that loop unexpectedly may be halted and
the remains inspected without prearrangement.
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The hardware-generated faults and the interrupt and quit signals
can, by request, be either ignored or caught by a process. For
example, the shell ignores quits to prevent a quit from logging the
user out. The editor catches interrupts and returns to its command
level. This is useful for stopping long printouts without losing work
in progress (the editor manipulates a copy of the file it is editing).
In systems without floating-point hardware, unimplemented instruc-
tions are caught and floating-point instructions are interpreted.

VIII. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely
due to the fact that it was not designed to meet any predefined
objectives. The first version was written when one of us (Thomp-
son), dissatisfied with the available computer facilities, discovered a
little-used PDP-7 and set out to create a more hospitable environ-
ment. This (essentially personal) effort was sufficiently successful to
gain the interest of the other author and several colleagues, and
later to justify the acquisition of the PDP-11/20, specifically to sup-
port a text editing and formatting system. When in turn the 11/20
was outgrown, the system had proved useful enough to persuade
management to invest in the PDP-11/45, and later in the PDP-11/70
and Interdata 8/32 machines, upon which it developed to its present
form. Our goals throughout the effort, when articulated at all, have
always been to build a comfortable relationship with the machine
and to explore ideas and inventions in operating systems and other
software. We have not been faced with the need to satisfy someone
else's requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible
in retrospect.

First: because we are programmers, we naturally designed the sys-
tem to make it easy to write, test, and run programs. The most
important expression of our desire for programming convenience
was that the system was arranged for interactive use, even though
the original version only supported one user. We believe that a
properly designed interactive system is much more productive and
satisfying to use than a "batch" system. Moreover, such a system is
rather easily adaptable to noninteractive use, while the converse is
not true.

Second: there have always been fairly severe size constraints on
the system and its software. Given the partially antagonistic desires
for reasonable efficiency and expressive power, the size constraint
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has encouraged not only economy, but also a certain elegance of
design. This may be a thinly disguised version of the "salvation
through suffering" philosophy, but in our case it worked.

Third: nearly from the start, the system was able to, and did,
maintain itself. This fact is more important than it might seem. If
designers of a system are forced to use that system, they quickly
become aware of its functional and superficial deficiencies and are
strongly motivated to correct them before it is too late. Because all
source programs were always available and easily modified on-line,
we were willing to revise and rewrite the system and its software
when new ideas were invented, discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least
the first two of these design considerations. The interface to the file
system, for example, is extremely convenient from a programming
standpoint. The lowest possible interface level is designed to elim-
inate distinctions between the various devices and files and between
direct and sequential access. No large "access method" routines are
required to insulate the programmer from the system calls; in fact,
all user programs either call the system directly or use a small library
program, less than a page long, that buffers a number of characters
and reads or writes them all at once.

Another important aspect of programming convenience is that
there are no "control blocks" with a complicated structure partially
maintained by and depended on by the file system or other system
calls. Generally speaking, the contents of a program's address space
are the property of the program, and we have tried to avoid placing
restrictions on the data structures within that address space.

Given the requirement that all programs should be usable with
any file or device as input or output, it is also desirable to push
device-dependent considerations into the operating system itself.
The only alternatives seem to be to load, with all programs, routines
for dealing with each device, which is expensive in space, or to
depend on some means of dynamically linking to the routine
appropriate to each device when it is actually needed, which is
expensive either in overhead or in hardware.

Likewise, the process-control scheme and the command interface
have proved both convenient and efficient. Because the shell
operates as an ordinary, swappable user program, it consumes no
"wired-down" space in the system proper, and it may be made as
powerful as desired at little cost. In particular, given the framework
in which the shell executes as a process that spawns other processes
to perform commands, the notions of I/O redirection, background
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processes, command files, and user-selectable system interfaces all
become essentially trivial to implement.

Influences

The success of UNIX lies not so much in new inventions but rather
in the full exploitation of a carefully selected set of fertile ideas, and
especially in showing that they can be keys to the implementation of
a small yet powerful operating system.

The fork operation , essentially as we implemented it, was present
in the GENIE time-sharing system . 10 On a number of points we were
influenced by Multics, which suggested the particular form of the
I/O system calls11 and both the name of the shell and its general
functions . The notion that the shell should create a process for each
command was also suggested to us by the early design of Multics,
although in that system it was later dropped for efficiency reasons.
A similar scheme is used by TENEX.12

IX. STATISTICS

The following numbers are presented to suggest the scale of the
Research UNIX operation. Those of our users not involved in docu-
ment preparation tend to use the system for program development,
especially language work. There are few important "applications"
programs.

Overall, we have today:

125 user population
33 maximum simultaneous users

1,630 directories
28,300 files

301,700 512-byte secondary storage blocks used

There is a "background" process that runs at the lowest possible
priority; it is used to soak up any idle CPU time. It has been used to
produce a million-digit approximation to the constant e, and other
semi-infinite problems. Not counting this background work, we
average daily:

13,500 commands
9.6 CPU hours
230 connect hours
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This paper describes in high-level terms the implementation of the
resident UNIX* kernel. This discussion is broken into three parts. The
,first part describes how the UNIX system views processes, users, and pro-
grams. The second part describes the I/O system. The last part
describes the UNIX file system.

1. INTRODUCTION

The UNIX kernel consists of about 10,000 lines of C code and
about 1,000 lines of assembly code. The assembly code can be
further broken down into 200 lines included for the sake of
efficiency (they could have been written in C) and 800 lines to per-
form hardware functions not possible in C.

This code represents 5 to 10 percent of what has been lumped
into the broad expression "the UNIX operating system." The kernel
is the only UNIX code that cannot be substituted by a user to his own
liking. For this reason, the kernel should make as few real decisions
as possible. This does not mean to allow the user a million options
to do the same thing. Rather, it means to allow only one way to do
one thing, but have that way be the least-common divisor of all the
options that might have been provided.

What is or is not implemented in the kernel represents both a

* UNIX is a trademark of Bell Laboratories.
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great responsibility and a great power. It is a soap-box platform on
"the way things should be done." Even so, if "the way" is too radi-
cal, no one will follow it. Every important decision was weighed
carefully. Throughout, simplicity has been substituted for efficiency.
Complex algorithms are used only if their complexity can be local-
ized.

11. PROCESS CONTROL

In the UNIX system, a user executes programs in an environment
called a user process. When a system function is required, the user
process calls the system as a subroutine. At some point in this call,
there is a distinct switch of environments. After this, the process is
said to be a system process. In the normal definition of processes,
the user and system processes are different phases of the same pro-
cess (they never execute simultaneously). For protection, each sys-
tem process has its own stack.

The user process may execute from a read-only text segment,
which is shared by all processes executing the same code. There is
no Junctional benefit from shared-text segments. An efficiency
benefit comes from the fact that there is no need to swap read-only
segments out because the original copy on secondary memory is still
current. This is a great benefit to interactive programs that tend to
be swapped while waiting for terminal input. Furthermore, if two
processes are executing simultaneously from the same copy of a
read-only segment, only one copy needs to reside in primary
memory. This is a secondary effect, because simultaneous execu-
tion of a program is not common. It is ironic that this effect, which
reduces the use of primary memory, only comes into play when
there is an overabundance of primary memory, that is, when there is
enough memory to keep waiting processes loaded.

All current read-only text segments in the system are maintained
from the text table. A text table entry holds the location of the text
segment on secondary memory. If the segment is loaded, that table
also holds the primary memory location and the count of the
number of processes sharing this entry. When this count is reduced
to zero, the entry is freed along with any primary and secondary
memory holding the segment. When a process first executes a
shared-text segment, a text table entry is allocated and the segment
is loaded onto secondary memory. If a second process executes a
text segment that is already allocated, the entry reference count is
simply incremented.

1932 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978



A user process has some strictly private read-write data contained
in its data segment. As far as possible, the system does not use the
user's data segment to hold system data. In particular, there are no
I/O buffers in the user address space.

The user data segment has two growing boundaries. One,
increased automatically by the system as a result of memory faults,
is used for a stack. The second boundary is only grown (or shrunk)
by explicit requests. The contents of newly allocated primary
memory is initialized to zero.

Also associated and swapped with a process is a small fixed-size
system data segment. This segment contains all the data about the
process that the system needs only when the process is active.
Examples of the kind of data contained in the system data segment
are: saved central processor registers, open file descriptors, account-
ing information, scratch data area, and the stack for the system
phase of the process. The system data segment is not addressable
from the user process and is therefore protected.

Last, there is a process table with one entry per process. This
entry contains all the data needed by the system when the process is
not active. Examples are the process's name, the location of the
other segments, and scheduling information. The process table
entry is allocated when the process is created, and freed when the
process terminates. This process entry is always directly addressable
by the kernel.

Figure 1 shows the relationships between the various process con-
trol data. In a sense, the process table is the definition of all
processes, because all the data associated with a process may be
accessed starting from the process table entry.

2.1 Process creation and program execution

Processes are created by the system primitive fork. The newly
created process (child) is a copy of the original process (parent).
There is no detectable sharing of primary memory between the two
processes. (Of course, if the parent process was executing from a
read-only text segment, the child will share the text segment.)
Copies of all writable data segments are made for the child process.
Files that were open before the fork are truly shared after the fork.
The processes are informed as to their part in the relationship to
allow them to select their own (usually non-identical) destiny. The
parent may wait for the termination of any of its children.

A process may exec a file. This consists of exchanging the
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current text and data segments of the process for new text and data
segments specified in the file. The old segments are lost. Doing an
exec does not change processes; the process that did the exec per-
sists, but after the exec it is executing a different program. Files
that were open before the exec remain open after the exec.

If a program, say the first pass of a compiler, wishes to overlay
itself with another program, say the second pass, then it simply
execs the second program. This is analogous to a "goto." If a pro-
gram wishes to regain control after execing a second program, it
should fork a child process, have the child exec the second pro-
gram, and have the parent wait for the child. This is analogous to a
"call." Breaking up the call into a binding followed by a transfer is
similar to the subroutine linkage in SL-5.1

2.2 Swapping

The major data associated with a process (the user data segment,
the system data segment, and the text segment) are swapped to and
from secondary memory, as needed. The user data segment and the
system data segment are kept in contiguous primary memory to
reduce swapping latency. (When low-latency devices, such as bub-
bles, CCDS, or scatter/gather devices, are used, this decision will
have to be reconsidered.) Allocation of both primary and secondary
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memory is performed by the same simple first-fit algorithm. When
a process grows, a new piece of primary memory is allocated. The
contents of the old memory is copied to the new memory. The old
memory is freed and the tables are updated. If there is not enough
primary memory, secondary memory is allocated instead. The pro-
cess is swapped out onto the secondary memory, ready to be
swapped in with its new size.

One separate process in the kernel, the swapping process, simply
swaps the other processes in and out of primary memory. It exam-
ines the process table looking for a process that is swapped out and
is ready to run. It allocates primary memory for that process and
reads its segments into primary memory, where that process com-
petes for the central processor with other loaded processes. If no
primary memory is available, the swapping process makes memory
available by examining the process table for processes that can be
swapped out. It selects a process to swap out, writes it to secondary
memory, frees the primary memory, and then goes back to look for
a process to swap in.

Thus there are two specific algorithms to the swapping process.
Which of the possibly many processes that are swapped out is to be
swapped in? This is decided by secondary storage residence time.
The one with the longest time out is swapped in first. There is a
slight penalty for larger processes. Which of the possibly many
processes that are loaded is to be swapped out? Processes that are
waiting for slow events (i.e., not currently running or waiting for
disk I/O) are picked first, by age in primary memory, again with size
penalties. The other processes are examined by the same age algo-
rithm, but are not taken out unless they are at least of some age.
This adds hysteresis to the swapping and prevents total thrashing.

These swapping algorithms are the most suspect in the system.
With limited primary memory, these algorithms cause total swap-
ping. This is not bad in itself, because the swapping does not impact
the execution of the resident processes. However, if the swapping
device must also be used for file storage, the swapping traffic
severely impacts the file system traffic. It is exactly these small sys-
tems that tend to double usage of limited disk resources.

2.3 Synchronization and scheduling

Process synchronization is accomplished by having processes wait
for events. Events are represented by arbitrary integers. By
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convention, events are chosen to be addresses of tables associated
with those events. For example, a process that is waiting for any of
its children to terminate will wait for an event that is the address of
its own process table entry. When a process terminates, it signals
the event represented by its parent's process table entry. Signaling
an event on which no process is waiting has no effect. Similarly,
signaling an event on which many processes are waiting will wake all
of them up. This differs considerably from Dijkstra's P and V syn-
chronization operations,2 in that no memory is associated with
events. Thus there need be no allocation of events prior to their
use. Events exist simply by being used.

On the negative side, because there is no memory associated with
events, no notion of "how much" can be signaled via the event
mechanism. For example, processes that want memory might wait
on an event associated with memory allocation. When any amount
of memory becomes available, the event would be signaled. All the
competing processes would then wake up to fight over the new
memory. (In reality, the swapping process is the only process that
waits for primary memory to become available.)

If an event occurs between the time a process decides to wait for
that event and the time that process enters the wait state, then the
process will wait on an event that has already happened (and may
never happen again). This race condition happens because there is
no memory associated with the event to indicate that the event has
occurred; the only action of an event is to change a set of processes
from wait state to run state. This problem is relieved largely by the
fact that process switching can only occur in the kernel by explicit
calls to the event-wait mechanism. If the event in question is sig-
naled by another process, then there is no problem. But if the event
is signaled by a hardware interrupt, then special care must be taken.
These synchronization races pose the biggest problem when UNIX is
adapted to multiple-processor configurations.3

The event-wait code in the kernel is like a co-routine linkage. At
any time, all but one of the processes has called event-wait. The
remaining process is the one currently executing. When it calls
event-wait, a process whose event has been signaled is selected and
that process returns from its call to event-wait.

Which of the runable processes is to run next? Associated with

each process is a priority. The priority of a system process is

assigned by the code issuing the wait on an event. This is roughly

equivalent to the response that one would expect on such an event.

Disk events have high priority, teletype events are low, and time-
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of-day events are very low. (From observation, the difference in
system process priorities has little or no performance impact.) All
user-process priorities are lower than the lowest system priority.
User-process priorities are assigned by an algorithm based on the
recent ratio of the amount of compute time to real time consumed
by the process. A process that has used a lot of compute time in the
last real-time unit is assigned a low user priority. Because interac-
tive processes are characterized by low ratios of compute to real
time, interactive response is maintained without any special arrange-
ments.

The scheduling algorithm simply picks the process with the
highest priority, thus picking all system processes first and user
processes second. The compute-to-real-time ratio is updated every
second. Thus, all other things being equal, looping user processes
will be scheduled round-robin with a 1-second quantum. A high-
priority process waking up will preempt a running, low-priority pro-
cess. The scheduling algorithm has a very desirable negative feed-
back character. If a process uses its high priority to hog the com-
puter, its priority will drop. At the same time, if a low-priority pro-
cess is ignored for a long time, its priority will rise.

III. I/O SYSTEM

The I/O system is broken into two completely separate systems:
the block I/O system and the character I/O system. In retrospect,
the names should have been "structured I/O" and "unstructured
I/O," respectively; while the term "block I/O" has some meaning,
"character I/O" is a complete misnomer.

Devices are characterized by a major device number, a minor
device number, and a class (block or character). For each class,
there is an array of entry points into the device drivers. The major
device number is used to index the array when calling the code for a
particular device driver. The minor device number is passed to the
device driver as an argument. The minor number has no
significance other than that attributed to it by the driver. Usually,
the driver uses the minor number to access one of several identical

physical devices.
The use of the array of entry points (configuration table) as the

only connection between the system code and the device drivers is
very important. Early versions of the system had a much less for-
mal connection with the drivers, so that it was extremely hard to
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handcraft differently configured systems. Now it is possible to
create new device drivers in an average of a few hours. The
configuration table in most cases is created automatically by a pro-
gram that reads the system's parts list.

3.1 Block I /O system

The model block I/O device consists of randomly addressed,
secondary memory blocks of 512 bytes each. The blocks are uni-
formly addressed 0, 1, ... up to the size of the device. The block
device driver has the job of emulating this model on a physical
device.

The block I/O devices are accessed through a layer of buffering
software. The system maintains a list of buffers (typically between
10 and 70) each assigned a device name and a device address. This
buffer pool constitutes a data cache for the block devices. On a read
request, the cache is searched for the desired block. If the block is
found, the data are made available to the requester without any phy-
sical I/O. If the block is not in the cache, the least recently used
block in the cache is renamed, the correct device driver is called to
fill up the renamed buffer, and then the data are made available.
Write requests are handled in an analogous manner. The correct
buffer is found and relabeled if necessary. The write is performed
simply by marking the buffer as "dirty." The physical I/O is then
deferred until the buffer is renamed.

The benefits in reduction of physical I/O of this scheme are sub-
stantial, especially considering the file system implementation.
There are, however, some drawbacks. The asynchronous nature of
the algorithm makes error reporting and meaningful user error han-
dling almost impossible. The cavalier approach to I/O error han-
dling in the UNIX system is partly due to the asynchronous nature of
the block I/O system. A second problem is in the delayed writes. If
the system stops unexpectedly, it is almost certain that there is a lot
of logically complete, but physically incomplete, I/O in the buffers.
There is a system primitive to flush all outstanding I/O activity from
the buffers. Periodic use of this primitive helps, but does not solve,
the problem. Finally, the associativity in the buffers can alter the
physical I/O sequence from that of the logical I/O sequence. This
means that there are times when data structures on disk are incon-
sistent, even though the software is careful to perform I/O in the
correct order. On non-random devices, notably magnetic tape, the
inversions of writes can be disastrous. The problem with magnetic
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tapes is "cured" by allowing only one outstanding write request per
drive.

3.2 Character I/O system

The character I/O system consists of all devices that do not fall
into the block I/O model. This includes the "classical" character
devices such as communications lines, paper tape, and line printers.
It also includes magnetic tape and disks when they are not used in a
stereotyped way, for example, 80-byte physical records on tape and
track-at-a-time disk copies. In short, the character I/O interface
means "everything other than block." I/O requests from the user
are sent to the device driver essentially unaltered. The implementa-
tion of these requests is, of course, up to the device driver. There
are guidelines and conventions to help the implementation of certain
types of device drivers.

3.2.1 Disk drivers

Disk drivers are implemented with a queue of transaction records.
Each record holds a read/write flag, a primary memory address, a
secondary memory address, and a transfer byte count. Swapping is
accomplished by passing such a record to the swapping device driver.
The block I/O interface is implemented by passing such records with
requests to fill and empty system buffers. The character I/O inter-
face to the disk drivers create a transaction record that points
directly into the user area. The routine that creates this record also
insures that the user is not swapped during this I/O transaction.
Thus by implementing the general disk driver, it is possible to use
the disk as a block device, a character device, and a swap device.
The only really disk-specific code in normal disk drivers is the pre-
sort of transactions to minimize latency for a particular device, and
the actual issuing of the I/O request.

3.2.2 Character lists

Real character-oriented devices may be implemented using the
common code to handle character lists. A character list is a queue
of characters. One routine puts a character on a queue. Another
gets a character from a queue. It is also possible to ask how many
characters are currently on a queue. Storage for all queues in the
system comes from a single common pool. Putting a character on a

UNIX IMPLEMENTATION 1939



queue will allocate space from the common pool and link the charac-
ter onto the data structure defining the queue. Getting a character
from a queue returns the corresponding space to the pool.

A typical character-output device (paper tape punch, for example)
is implemented by passing characters from the user onto a character
queue until some maximum number of characters is on the queue.
The I/O is prodded to start as soon as there is anything on the
queue and, once started, it is sustained by hardware completion
interrupts. Each time there is a completion interrupt, the driver gets
the next character from the queue and sends it to the hardware.
The number of characters on the queue is checked and, as the count
falls through some intermediate level, an event (the queue address)
is signaled. The process that is passing characters from the user to
the queue can be waiting on the event, and refill the queue to its
maximum when the event occurs.

A typical character input device (for example, a paper tape reader)
is handled in a very similar manner.

Another class of character devices is the terminals. A terminal is

represented by three character queues. There are two input queues

(raw and canonical) and an output queue. Characters going to the

output of a terminal are handled by common code exactly as

described above. The main difference is that there is also code to

interpret the output stream as ASCII characters and to perform some

translations, e.g., escapes for deficient terminals. Another common

aspect of terminals is code to insert real-time delay after certain con-

trol characters.

Input on terminals is a little different. Characters are collected
from the terminal and placed on a raw input queue. Some device-
dependent code conversion and escape interpretation is handled
here. When a line is complete in the raw queue, an event is sig-
naled. The code catching this signal then copies a line from the raw
queue to a canonical queue performing the character erase and line
kill editing. User read requests on terminals can be directed at
either the raw or canonical queues.

3.2.3 Other character devices

Finally, there are devices that fit no general category. These
devices are set up as character I/O drivers. An example is a driver
that reads and writes unmapped primary memory as an I/O device.
Some devices are too fast to be treated a character at time, but do
not fit the disk I/O mold. Examples are fast communications lines

1940 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978



and fast line printers. These devices either have their own buffers
or "borrow" block I/O buffers for a while and then give them back.

IV. THE FILE SYSTEM

In the UNIX system, a file is a (one-dimensional) array of bytes.
No other structure of files is implied by the system. Files are
attached anywhere (and possibly multiply) onto a hierarchy of direc-
tories. Directories are simply files that users cannot write. For a
further discussion of the external view of files and directories, see
Ref. 4.

The UNIX file system is a disk data structure accessed completely
through the block I/O system. As stated before, the canonical view
of a "disk" is a randomly addressable array of 512-byte blocks. A
file system breaks the disk into four self-identifying regions. The
first block (address 0) is unused by the file system. It is left aside
for booting procedures. The second block (address 1) contains the
so-called "super-block." This block, among other things, contains
the size of the disk and the boundaries of the other regions. Next
comes the i-list, a list of file definitions. Each file definition is a 64-
byte structure, called an i-node. The offset of a particular i-node
within the i-list is called its i-number. The combination of device
name (major and minor numbers) and i-number serves to uniquely
name a particular file. After the i-list, and to the end of the disk,
come free storage blocks that are available for the contents of files.

The free space on a disk is maintained by a linked list of available
disk blocks. Every block in this chain contains a disk address of the
next block in the chain. The remaining space contains the address
of up to 50 disk blocks that are also free. Thus with one I/O opera-
tion, the system obtains 50 free blocks and a pointer where to find
more. The disk allocation algorithms are very straightforward.
Since all allocation is in fixed-size blocks and there is strict account-
ing of space, there is no need to compact or garbage collect. How-
ever, as disk space becomes dispersed, latency gradually increases.
Some installations choose to occasionally compact disk space to
reduce latency.

An i-node contains 13 disk addresses. The first 10 of these
addresses point directly at the first 10 blocks of a file. If a file is
larger than 10 blocks (5,120 bytes), then the eleventh address points
at a block that contains the addresses of the next 128 blocks of the
file. If the file is still larger than this (70,656 bytes), then the
twelfth block points at up to 128 blocks, each pointing to 128 blocks
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of the file. Files yet larger (8,459,264 bytes) use the thirteenth
address for a "triple indirect" address. The algorithm ends here
with the maximum file size of 1,082,201,087 bytes.

A logical directory hierarchy is added to this flat physical structure
simply by adding a new type of file, the directory. A directory is
accessed exactly as an ordinary file. It contains 16-byte entries con-
sisting of a 14-byte name and an i-number. The root of the hierar-
chy is at a known i-number (viz., 2). The file system structure
allows an arbitrary, directed graph of directories with regular files
linked in at arbitrary places in this graph. In fact, very early UNIX
systems used such a structure. Administration of such a structure
became so chaotic that later systems were restricted to a directory
tree. Even now, with regular files linked multiply. into arbitrary
places in the tree, accounting for space has become a problem. It
may become necessary to restrict the entire structure to a tree, and
allow a new form of linking that is subservient to the tree structure.

The file system allows easy creation, easy removal, easy random
accessing, and very easy space allocation. With most physical
addresses confined to a small contiguous section of disk, it is also
easy to dump, restore, and check the consistency of the file system.
Large files suffer from indirect addressing, but the cache prevents
most of the implied physical I/O without adding much execution.
The space overhead properties of this scheme are quite good. For
example, on one particular file system, there are 25,000 files con-
taining 130M bytes of data-file content. The overhead (i-node,
indirect blocks, and last block breakage) is about 11.5M bytes. The
directory structure to support these files has about 1,500 directories
containing 0.6M bytes of directory content and about 0.5M bytes of
overhead in accessing the directories. Added up any way, this
comes out to less than a 10 percent overhead for actual stored data.
Most systems have this much overhead in padded trailing blanks
alone.

4.1 File system implementation

Because the i-node defines a file, the implementation of the file
system centers around access to the i-node. The system maintains a
table of all active i-nodes. As a new file is accessed, the system
locates the corresponding i-node, allocates an i-node table entry, and
reads the i-node into primary memory. As in the buffer cache, the
table entry is considered to be the current version of the i-node.
Modifications to the i-node are made to the table entry. When the
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last access to the i-node goes away, the table entry is copied back to
the secondary store i-list and the table entry is freed.

All I/O operations on files are carried out with the aid of the
corresponding i-node table entry. The accessing of a file is a
straightforward implementation of the algorithms mentioned previ-
ously. The user is not aware of i-nodes and i-numbers. References
to the file system are made in terms of path names of the directory
tree. Converting a path name into an i-node table entry is also
straightforward. Starting at some known i-node (the root or the
current directory of some process), the next component of the path
name is searched by reading the directory. This gives an i-number
and an implied device (that of the directory). Thus the next i-node
table entry can be accessed. If that was the last component of the
path name, then this i-node is the result. If not, this i-node is the
directory needed to look up the next component of the path name,
and the algorithm is repeated.

The user process accesses the file system with certain primitives.
The most common of these are open , create , read , write, seek,
and close. The data structures maintained are shown in Fig. 2. In
the system data segment associated with a user, there is room for
some (usually between 10 and 50) open files. This open file table
consists of pointers that can be used to access corresponding i-node
table entries. Associated with each of these open files is a current
I/O pointer. This is a byte offset of the next read/write operation
on the file. The system treats each read/write request as random
with an implied seek to the I/O pointer. The user usually thinks of
the file as sequential with the 1/0 pointer automatically counting the
number of bytes that have been read/written from the file. The
user may, of course, perform random I/O by setting the I/O pointer
before reads/writes.

With file sharing, it is necessary to allow related processes to share
a common I/O pointer and yet have separate I/O pointers for
independent processes that access the same file. With these two
conditions, the I/O pointer cannot reside in the i-node table nor can
it reside in the list of open files for the process. A new table (the
open file table) was invented for the sole purpose of holding the I/O
pointer. Processes that share the same open file (the result of
forks) share a common open file table entry. A separate open of the
same file will only share the i-node table entry, but will have distinct
open file table entries.

The main file system primitives are implemented as follows.
open converts a file system path name into an i-node table entry. A
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using the kernel as a tool. A good example of this is the command

language .5 Each user may have his own command language.

Maintenance of such code is as easy as maintaining user code. The

idea of implementing "system" code with general user primitives

comes directly from MULTICS.6
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UNIX* is a general-purpose, interactive time-sharing operating sys-
tem primarily for the DEC PDP-11 series of computers, and recently
for the Interdata 8/32. Since its development in 1971, it has
become quite widely used, although publicity efforts on its behalf
have been minimal, and the license under which it is made available
outside the Bell System explicitly excludes maintenance. Currently,
there are more than 300 Bell System installations, and an even
larger number in universities, secondary schools, and commercial
and government institutions. It is useful on a rather broad range of
configurations, ranging from a large PDP-11/70 supporting 48 users
to a single-user LSI-11 system.

1. SOME GENERAL OBSERVATIONS

In most ways, UNIX is a very conservative system. Only a handful
of its ideas are genuinely new. In fact, a good case can be made that
it is in essence a modern implementation of M.I.T.'s CTSS system.1
This claim is intended as a compliment to both UNIX and CTSS.
Today, more than fifteen years after CTSS was born, few of the
interactive systems we know of are superior to it in ease of use;
many are inferior in basic design.

UNIX was never a "project"; it was not designed to meet any
specific need except that felt by its major author, Ken Thompson,
and soon after its origin by the author of this paper, for a pleasant
environment in which to write and use programs. Although it is
rather difficult, after the fact, to try to account for its success, the
following reasons seem most important.

(i) It is simple enough to be comprehended, yet powerful enough
to do most of the things its users want.

(ii) The user interface is clean and relatively surprise-free. It is
also terse to the point of being cryptic.

(iii) It runs on a machine that has become very popular in its own
right.

(iv) Besides the operating system and its basic utilities, a good deal
of interesting software is available, including a sophisticated
text-processing system that handles complicated mathematical
material2 and produces output on a typesetter or a typewriter
terminal, and a LALR parser-generator.3

" UNIX is a trademark of Bell Laboratories.
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This paper discusses the strong and weak points of the system and
lists some areas where no effort has been expended. Only enough
design details are given to motivate the discussion; more can be
found elsewhere in this issue.a, s

One problem in discussing the capabilities and deficiencies of UNIX
is that there is no unique version of the system. It has evolved con-
tinuously both in time, as new functions are added and old problems
repaired, and in space, as various organizations add features
intended to meet their own needs. Four important versions of the
system are in current use:

(i) The standard system maintained by the UNIX Support Group
at Bell Laboratories for Bell System projects.

(ii) The "Programmer's Workbench" version,6,7 also in wide use
within Bell Laboratories, especially in areas in which text-
processing and job-entry to other machines are important.
Recently, PWB/UNIX has become available to outside organiza-
tions as well.

(iii) The "Sixth Edition" system (so called from the manual that
describes it), which is the most widely used under Western
Electric licenses by organizations outside the Bell System.

(iv) The version currently used in the Computing Science
Research Center, where the UNIX system was developed, and
at a few other locations at Bell Laboratories.

The proliferation of versions makes some parts of this paper hard
to write, especially where details (e.g., how large can a file be?) are
mentioned. Although compilation of a list of differences between
versions of UNIX is a useful exercise, this is not the place for such a
list, so the paper will concentrate on the properties of the system as
it exists for the author, in the current research version of the sys-
tem.

The existence of several variants of UNIX is, of course, a problem
not only when attempting to describe the system in a paper such as
this, but also to the users and administrators. The importance of
this problem is not lost upon the proprietors of the various versions;
indeed, vigorous effort is under way to combine the best features of
the variants into a single system.

II. THE STRUCTURE OF FILES

The UNIX file system is simple in structure ; nevertheless, it is
more powerful and general than those often found even in
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considerably larger operating systems. Every file is regarded as a
featureless, randomly addressable sequence of bytes. The system
conceals physical properties of the device on which the file is stored,
such as the size of a disk track. The size of a file is the number of
bytes it contains; the last byte is determined by the high-water mark
of writes to the file. It is not necessary, nor even possible, to preal-
locate space for a file. The system calls to read and write each come
in only one form, which specifies the local name of an open file, a
buffer to or from which to perform I/O, and a byte count. I/O is
normally sequential, so the first byte referred to by a read or write
operation immediately follows the final byte transferred by the
preceding operation. "Random access" is accomplished using a

seek system call, which moves the system's internal read (or write)
pointer for the instance of the open file to another byte that the
next read or write will implicitly address. All I/O appears com-
pletely synchronous; read-ahead and write-behind are performed
invisibly by the system.

This particularly simple way of viewing files was suggested by the
Multics I/O system.8

The addressing mechanism for files must be carefully designed if
it is to be efficient. Files can be large (about 109 bytes), are grown
without pre-allocation, and are randomly accessible. The overhead
per file must be small, because there can be many files (the machine
on which this paper was written has about 27,000 on the disk storing
most user's files); many of them are small (80 percent have ten or
fewer 512-byte blocks, and 37 percent are only one block long).
The details of the file-addressing mechanism are given elsewhere.5

No careful study has been made of the efficiency of disk I/O, but
a simple experiment suggests that the efficiency is comparable to two
other systems, DEC's IAS for the PDP-11, and Honeywell's GCOS TSS
system running on the H6070. The experiment consisted of timing
a program that copied a file that, on the PDP-11, contained 480
blocks (245,760 bytes). The file on the Honeywell had the same
number of bytes (each of nine bits rather than eight), but there
were 1280 bytes per block. With otherwise idle machines, the real
times to accomplish the file copies were

system sec. msec./block

UNIX 21 21.8
IAS 19 19.8
H6070 9 23.4
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The effective transfer rates on the PDP-lls are essentially identical,
and the Honeywell rate is not far off when measured in blocks per
second. No general statistical significance can be ascribed to this lit-
tle experiment. Seek time, for example, dominates the measured
times (because the disks on the PDP-11 transfer one block of data in
only 0.6 millisecond once positioned), and there was no attempt to
optimize the placement of the input or output files. The results do
seem to suggest, however, that the very flexible scheme for
representing UNIX files carries no great cost compared with at least
two other systems.

The real time per block of I/O observed under the UNIX system in
this test was about 22 milliseconds. Because the system overhead
per block is 6 milliseconds, most of which is overlapped, it would
seem that the overall transfer rate of the copy might be nearly dou-
bled if a block size of 1024 bytes were used instead of 512. There
are some good arguments against making such a change. For exam-
ple, space utilization on the disk would suffer noticeably: doubling
the block size would increase the space occupied by files on the
author's machine by about 15 percent, a number whose importance
becomes apparent when we observe that the free space is currently
only 5 percent of the total available. Increasing the block size would
also force a decrease in the size of the system's buffer cache and
lower its hit rate, but this effect has not been reliably estimated.

Moreover, the copy program is an extreme case in that it is totally
I/O bound, with no processing of the data. Most programs do at
least look at the data as it goes by; thus to sum the bytes in the file
mentioned above required 10 seconds of real time, 5 of which were
"user time" spent looking at the bytes. To read the file and ignore
it completely required 9 seconds, with negligible user time. It may
be concluded that the read-ahead strategy is almost perfectly
effective, and that a program that spends as little as 50 microseconds
per byte processing its data will not be significantly delayed waiting
for I/O (unless, of course, it is competing with other processes for
use of the disk).

The basic system interface conceals physical aspects of file storage,
such as blocks, tracks, and cylinders. Likewise, the concept of a
record is completely absent from the operating system proper and
nearly so from the standard software. (By the term "record" we
mean an identifiable unit of information consisting either of a fixed
number of bytes or of a count together with that number of bytes.)
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A text file, for example, is stored as a sequence of characters with
new-line characters to delimit lines. This form of storage is not only
efficient in space when compared with fixed-length records, or even
records described by character counts, but is also the most con-
venient form of storage for the vast majority of text-processing pro-
grams, which almost invariably deal with character streams. Most
important of all, however, is the fact that there is only one represen-
tation of text files. One of the most valuable characteristics of UNIX
is the degree to which separate programs interact in useful ways; this
interaction would be seriously impaired if there were a variety of
representations of the same information.

We recall with a certain horrified fascination a system whose For-
tran compiler demanded as input a file with "variable-length"
records each of which was required to be 80 bytes long. The pre-
valence of this sort of nonsense makes the following test of software
flexibility (due to M. D. Mcllroy) interesting to try when meeting
new systems. It consists of writing a Fortran (or PL/I, or other
language) program that copies itself to another file, then running the
program, and finally attempting to compile the resulting output.
Most systems eventually pass, but often only after an expert has
been called in to mutter incantations that convert the data file gen-
erated by the Fortran program to the format expected by the Fortran
compiler. In sum, we would consider it a grave imposition to
require our users or ourselves, when mentioning a file, to specify
the form in which it is stored.

For the reasons discussed above, UNIX software does not use the
traditional notion of "record" in relation to files, particularly those
containing textual information. But certainly there are applications
in which the notion has use. A program or self-contained set of
programs that generates intermediate files is entitled to use any form
of data representation it considers useful. A program that maintains
a large data base in which it must frequently look up entries may
very well find it convenient to store the entries sequentially, in
fixed-size units, sorted by index number. With some changes in the
requirements or usual access style, other file organizations become
more appropriate. It is straightforward to implement any number of
schemes within the UNIX file system precisely because of the uni-
form, structureless nature of the underlying files; the standard
software, however, does not include mechanisms to do it. As an
example of what is possible, INGRESS is a relational data base
manager running under UNIX that supports five different file organi-
zations.
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III. THE STRUCTURE OF THE FILE SYSTEM

On each file system device such as a disk, the accessing informa-
tion for files is arranged in an array starting at a known place. A file
may thus be identified by its device and its index within the device.
The internal name of a file is, however, never needed by users or
their programs. There is a hierarchically arranged directory structure
in which each directory contains a list of names (character strings)
and the associated file index, which refers implicitly to the same
device as does the directory. Because directories are themselves
files, the naming structure is potentially an arbitrary directed graph.
Administrative rules restrict it to have the form of a tree, except
that nondirectory files may have several names (entries in various
directories).

A file is named by a sequence of directories separated by "/" lead-
ing towards a leaf of the tree. The path specified by a name starting
with "/" originates at the root; without an initial "/" the path starts
at the current directory. Thus the simple name x indicates the entry
x in the current directory; / usr/dmr/x searches the root for direc-
tory usr, searches it for directory dmr, and finally specifies x in
dmr.

When the system is initialized, only one file system device is
known (the root device); its name is built into the system. More
storage is attached by mounting other devices, each of which con-
tains its own directory structure. When a device is mounted, its
root is attached to a leaf of the already accessible hierarchy. For
example, suppose a device containing a subhierarchy is mounted on
the file /usr. From then on, the original contents of /usr are hid-
den from view, and in names of the form /usr/... the ... specifies a
path starting at the root of the newly mounted device.

This file system design is inexpensive to implement, is general
enough to satisfy most demands, and has a number of virtues: for
example, device self-consistency checks are straightforward. It does
have a few peculiarities. For example, instantaneously enforced
space quotas, either for users or for directories, are relatively
difficult to implement (it has been done at one university site).
Perhaps more serious, duplicate names for the same file (links)
while trivial to provide on a single device, do not work across
devices; that is, a directory entry cannot point to a file on another
device. Another limitation of the design is that an arbitrary subset
of members of a given directory cannot be stored on another device.
It is common for the totality of user files to be too voluminous for a
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given device. It is then impossible for the directories of all users to
be members of the same directory, say /usr. Instead they must be
split into groups, say /usrl and /usr2; this is somewhat incon-
venient, especially when space on one device runs out so that some
users must be moved. The data movement can be done expedi-
tiously, but the change in file names from /usrl /... to /usr2/... is
annoying both to those people who must learn the new name and to
programs that happen to have such names built into them.

Earlier variants of this file system design stored disk block
addresses as 16-bit quantities, which limited the size of a file-system
volume to 65,536 blocks. This did not mean that the rest of a larger
physical device was wasted, because there could be several logical
devices per drive, but the limitation did aggravate the difficulty just
mentioned. Recent versions of the system can handle devices with
up to about 16 million blocks.

IV. INPUT /OUTPUT DEVICES

The UNIX system goes to some pains to efface differences between
ordinary disk files and I/O devices such as terminals, tape drives,
and line printers. An entry appears in the file system hierarchy for
each supported device, so that the structure of device names is the
same as that of file names. The same read and write system calls
apply to devices and to disk files. Moreover, the same protection
mechanisms apply to devices as to files.

Besides the traditionally available devices, names exist for disk
devices regarded as physical units outside the file system, and for
absolutely addressed memory. The most important device in prac-
tice is the user's terminal. Because the terminal channel is treated
in the same way as any file (for example, the same I/O calls apply),
it is easy to redirect the input and output of commands from the ter-
minal to another file, as explained in the next section. It is also easy
to provide inter-user communication.

Some differences are inevitable. For example, the system ordi-
narily treats terminal input in units of lines, because character-erase
and line-delete processing cannot be completed until a full line is
typed. Thus if a program attempts to read some large number of
bytes from a terminal, it waits until a full line is typed, and then
receives a notification that some smaller number of bytes has actu-
ally been read. All programs must be prepared for this eventuality
in any case, because a read operation from any disk file will return
fewer bytes than requested when the end of the file is encountered.
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Ordinarily, therefore, reads from the terminal are fully compatible
with reads from a disk file. A subtle problem can occur if a program
reads several bytes, and on the basis of a line of text found therein
calls another program to process the remainder of the input. Such a
program works successfully when the input source is a terminal,
because the input is returned a line at a time, but when the source is
an ordinary file the first program may have consumed input intended
for the second. At the moment the simplest solution is for the first
program to read one character at a time. A more general solution,
not implemented, would allow a mode of reading wherein at most
one line at a time was returned, no matter what the input source.*

V. THE USER INTERFACE

The command interpreter, called the "shell," is the most impor-
tant communication channel between the system and its users. The
shell is not part of the operating system, and enjoys no special
privileges. A part of the entry for each user in the password file
read by the login procedure contains the name of the program that
is to be run initially, and for most users that program is the shell.
This arrangement is by now commonplace in well-designed systems,
but is by no means universal. Among its advantages are the ability
to swap the shell even though the kernel is not swappable, so that
the size of the shell is not of great concern. It is also easy to replace
the shell with another program, either to test a new version or to
provide a non-standard interface.

The full language accepted by the shell is moderately complicated,

because it performs a number of functions; it is discussed in more

detail elsewhere in this issue.'° Nevertheless, the treatment of indi-

vidual commands is quite simple and regular: a command is a

sequence of words separated by white space (spaces and tabs). The

first word is the name of the command, where a command is any

executable file. A full name, with "/" characters, may be used to

specify the file unambiguously; otherwise, an agreed-upon sequence

of directories is searched. The only distinction enjoyed by a

system-provided command is that it appears in a directory in the

search path of most users. (A very few commands are built into the

shell.) The other words making up a command line fall into three

types:

*This suggestion may seem in conflict with our earlier disdain of "records." Not real-
ly, because it would only affect the way in which information is read, not the way it is
stored. The same bytes would be obtained in either case.

RETROSPECTIVE 1955



buffering in each pipe. Finally, although an acceptable (if compli-
cated) notation has been proposed that creates only deadlock-free
graphs, the need has never been felt keenly enough to impel anyone
to implement it.

Other aspects of UNIX, not closely tied to any particular program,
are also valuable in providing a pleasant user interface. One thing
that seems trivial, yet makes a surprising difference once one is used
to it, is full-duplex terminal I/O together with read-ahead. Even
though programs generally communicate with the user in terms of
lines, rather than single characters, full-duplex terminal I/O means
that the user can type at any time, even if the system is typing back,
without fear of losing or garbling characters. With read-ahead, one
need not wait for a response to every line. A good typist entering a
document becomes incredibly frustrated at having to pause before
starting each new line; for anyone who knows what he wants to say
any slowness in response becomes psychologically magnified if the
information must be entered bit by bit instead of at full speed.

Both input and output of UNIX programs tend to be very terse.
This can be disconcerting, especially to the beginner. The editor,
for example, has essentially only one diagnostic, namely "?", which
means "you have done something wrong." Once one knows the edi-
tor, the error or difficulty is usually obvious, and the terseness is
appreciated after a period of acclimation, but certainly people can be
confused at first. However, even if some fuller diagnostics might be
appreciated on occasion, there is much noise that we are happy to be
rid of. The command interpreter does not remark loudly that each
program finished normally, or announce how much space or time it
took; the former fact is whispered by an unobtrusive prompt, and
anyone who wishes to know the latter may ask explicitly.

Likewise, commands seldom prompt for missing arguments;
instead, if the argument is not optional, they give at most a one-line
summary of their usage and terminate. We know of some systems
that seem so proud of their ability to interact that they force interac-
tion on the user whether it is wanted or not. Prompting for missing
arguments is an issue of taste that can be discussed in calm tones;
insistence on asking questions may cause raised voices.

Although the terseness of typical UNIX programs is, to some
extent, a matter of taste, it is also connected with the way programs
tend to be combined. A simple example should make the situation
clear. The command who writes out one line for each user logged
into the system, giving a name, a terminal name, and the time of
login. The command we (for "word count") writes out the number
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of lines, the number of words, and the number of characters in its
input. Thus

who I we

tells in the line-count field how many users are logged in. If who
produced extraneous verbiage, the count would be off. Worse, if
we insisted on determining from its input whether lines, words, or
characters were wanted, it could not be used in this pipeline. Cer-
tainly, not every command that generates a table should omit head-
ings; nevertheless, we have good reasons to interpret the phrase
"extraneous verbiage" rather liberally.

VI. THE ENVIRONMENT OF A PROCESS

The virtual address space of a process is divided into three
regions: a read-only, shared-program text region; a writable data area
that may grow at one end by explicit request; and a stack that grows
automatically as information is pushed onto it by subroutine calls.
The address space contains no "control blocks."

New processes are created by the fork operation, which creates a
child process whose code and data are copied from the parent. The
child inherits the open files of the parent, and executes asynchro-
nously with it unless the parent explicitly waits for termination of
the child. The fork mechanism is essential to the basic operation of
the system, because each command executed by the shell runs in its
own process. This scheme makes a number of services extremely
easy to provide. I/O redirection, in particular, is a basically simple
operation; it is performed entirely in the subprocess that executes
the command, and thus no memory in the parent command inter-
preter is required to rescind the change in standard input and out-
put. Background processes likewise require no new mechanism; the
shell merely refrains from waiting for the completion of a command
specified to be asynchronous. Finally, recursive use of the shell to
interpret a sequence of commands stored in a file is in no way a spe-
cial operation.

Communication by processes with the outside world is restricted
to a few paths. Explicit system calls, mostly to do I/O, are the most
common. A new program receives a set of character-string argu-
ments from its invoker, and returns a byte of status information
when it terminates. It may be sent " signals ," which ordinarily force
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the software were written in a rather open environment, so the con-
tinuous, careful effort required to maintain a fully secure system has
not always been expended; as a result, there are several security
problems.

The weakest area is in protecting against crashing, or at least crip-
pling, the operation of the system. Most versions lack checks for
overconsumption of certain resources, such as file space, total
number of files, and number of processes (which are limited on a
per-user basis in more recent versions). Running out of these
things does not cause a crash, but will make the system unusable for
a period. When resource exhaustion occurs, it is generally evident
what happened and who was responsible, so malicious actions are
detectable, but the real problem is the accidental program bug.

The theoretical aspects of the situation are brighter in the area of
information protection. Each file is marked with its owner and the
"group" of users to which the owner belongs. Files also have a set
of nine protection bits divided into three sets of three bits specifying
permission to read, to write, or execute as a program. The three
sets indicate the permissions applicable to the owner of the file, to
members of the owner's group, and to all others.

For directories, the meanings of the access bits are modified:
"read" means the ability to read the directory as a file, that is, to
discover all the names it contains; "execute" means the ability to
search a directory for a given name when it appears as part of a
qualified name; "write" means the ability to create and delete files in
that directory, and is unrelated to writing of files in the directory.

This classification is not fine enough to account for the needs of
all installations, but is usually adequate. In fact, most installations
do not use groups at all (all users are in the same group), and even
those that do would be happy to have more possible user IDs and
fewer group-IDs. (Older versions of the system had only 256 of
each; the current system has 65536, however, which should be
enough.)

One particular user (the "super-user") is able to access all files
without regard to permissions. This user is also the only one per-
mitted to exercise privileged system entries. It is recognized that
the very existence of the notion of a super-user is a theoretical, and
often practical, blemish on any protection scheme.

An unusual feature of the protection system is the "set-user-ID"
bit. When this bit is on for a file, and the file is executed as a pro-
gram, the user number used in file permission checking is not that
of the person running the program, but that of the owner of the file.
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In practice, the bit is used to mark the programs that perform the
privileged system functions mentioned above (such as creation of
directories, changing the owner of a file, and so forth).

In theory, the protection scheme is adequate to maintain security,
but, in practice, breakdowns can easily occur. Most often these
come from incorrect protection modes on files. Our software tends
to create files that are accessible, even writable, by everyone. This
is not an accident, but a reflection of the open environment in
which we operate. Nevertheless, people in more hostile situations
must adjust modes frequently; it is easy to forget, and in any case
there are brief periods when the modes are wrong. It would be
better if software created files in a default mode specifiable by each
user. The system administrators must be even more careful than
the users to apply proper protection. For example, it is easy to write
a user program that interprets the contents of a physical disk drive
as a file system volume. Unless the special file referring to the disk
is protected, the files on it can be accessed in spite of their protec-
tion modes. If a set-user-ID file is writable, another user can copy
his own program onto it.

It is also possible to take advantage of bugs in privileged set-user-
ID programs. For example, the program that sends mail to other
users might be given the ability to send to directories that are other-
wise protected. If so, this program must be carefully written in
order to avoid being fooled into mailing other people's private files
to its invoker.

There are thus a number of practical difficulties in maintaining a
fully secure system. Nevertheless, the operating system itself seems
capable of maintaining data security. The word "seems" must be
used because the system has not been formally verified, yet no
security-relevant bugs are known (except the ability to run it out of
resources, which was mentioned above). In some ways, in fact,
UNIX is inherently safer than many other systems. For example, I/O
is always done on open files, which are named by an object local to a
process. Permissions are checked when the file is opened. The I/O
calls themselves have as argument only the (local) name of the open
file, and the specification of the user's buffer; physical I/O occurs to
a system buffer, and the data are copied in or out of the user's
address space by a single piece of code in the system. Thus, there is
no need for complicated, bug-prone verification of device commands
and channel programs supplied by the user. Likewise, the absence
of user "data control blocks" or other control blocks from the user's
address space means that the interface between user processes and
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arranged file system. It is very useful for maintaining direc-
tories containing related files, it is efficient because the
amount of searching for files is bounded, and it is easy to
implement.

(ii) The notion of "record" seems to be an obsolete remnant of
the days of the 80-column card. A file should consist of a
sequence of bytes.

(iii) The greatest care should be taken to ensure that there is only
one format for files. This is essential for making programs
work smoothly together.

(iv) Systems should be written in a high-level language that
encourages portability. Manufacturers who build more than
one line of machines and also build more than one operating
system and set of utilities are wasting money.
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The UNIX Shell
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The UNIX* shell is a command programming language that provides an
interface to the UNIX operating system. It contains several mechanisms
found in algorithmic languages such as control flow primitives, variables,

and parameter passing. Constructs such as while , if, for, and case are

available. Two-way communication is possible between the shell and
commands. String-valued parameters, typically file names or flags, may
be passed to a command. A return code is set by commands and may be

used to determine the flow of control, and the standard output from a
command may be used as input to the shell. The shell can modify the

environment in which commands run. Input and output can be
redirected and processes that communicate through pipes" can be
invoked. Commands are found by searching directories in the file system
in a sequence that can be defined by the user.

1. INTRODUCTION

The UNIX shellt is both a programming language and a command
language. As a programming language , it contains control-flow
primitives and string-valued variables. As a command language, it
provides a user interface to the process-related facilities of the UNIX
operating system. The design of the shell is based in part on the

UNIX is a trademark of Bell Laboratories.
t This term (shell) seems to have first appeared in the MULTICS system (Ref. 1). It
is, however, not universal; other terms include command interpreter, command

language.

1971



original UNIX shell2 and the PWB/UNIX shell,3' 4 some features having
been taken from both. Similarities also exist with the command
interpreters of the Cambridge Multiple Access Systems and of
CTSS.6 The language described here differs from its predecessors in
that the control-flow notations are more powerful and are under-
stood by the shell itself. However, the notation for simple com-
mands and for parameter passing and substitution is similar in all
these languages.

The shell executes commands that are read either from a terminal
or from a file. The design of the shell must therefore take into
account both interactive and noninteractive use. Except in some
minor respects, the behavior of the shell is independent of its input
source.

II. NOTATION

Simple commands are written as sequences of "words" separated
by blanks. The first word is the name of the command to be exe-
cuted. Any remaining words are passed as arguments to the
invoked command. For example, the command

Is -I

prints a list of the file names in the current directory. The argument
-I tells Is to print the date of last use, the size, and status informa-
tion for each file.

Commands are similar to procedure calls in languages such as
Algol 68 or PL/I. The notation is different in two respects. First,
although the arguments are arbitrary strings, in most cases they
need not be enclosed in quotes. Second, there are no parentheses
enclosing the list of arguments nor commas separating them. Com-
mand languages tend not to have the extensive expression syntax
found in algorithmic languages. Their primary purpose is to issue
commands; it is therefore important that the notation be free from
superfluous characters.

To execute a command, the shell normally creates a new process
and waits for it to finish. Both these operations are primitives avail-
able in the UNIX operating system. A command may be run without
waiting for it to finish using the postfix operator & . For example,

print file &

calls the print command with argument file and runs it in the
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background. The & is a metacharacter interpreted by the shell and
is not passed as an argument to print.

Associated with each process, UNIX maintains a set of file descrip-
tors numbered 0,1,... that are used in all input-output transactions
between processes and the operating system. File descriptor 0 is
termed the standard input and file descriptor 1 the standard output.
Most commands produce their output on the standard output that is
initially (following login) connected to a terminal. This output may
be redirected for the duration of a command, as in

Is -1 >file

The notation >file is interpreted by the shell and is not passed as
an argument to Is. If the file does not exist, the shell creates it;
otherwise, the contents of the file are replaced with the output from
the command. To append to a file, the notation

Is -1 >>file

is provided. Similarly, the standard input may be taken from a file
by writing, for example,

we <file

we prints the number of characters, words, and lines on the stan-
dard input.

The standard output of one command may be connected to the
standard input of another by writing the "pipe" operator, indicated
by I , as in

Is -1 1 we

Two commands connected in this way constitute a "pipeline," and
the overall effect is the same as

Is -1 > file
we <file

except that no file is used. Instead , the two processes are connected
by a pipe that is created by an operating system call. Pipes are uni-
directional; synchronization is achieved by halting we when there is
nothing to read and halting Is when the pipe is full. This matter is
dealt with by UNIX, not the shell.

A filter is a command that reads its input , transforms it in some
way, and prints the result as output . One such filter, grep , selects
from its input those lines that contain some specified string. For
example,
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Is I grep old

prints those file names from the current directory that contain the
string old.

A pipeline may consist of more than two commands, the input of

each being connected to the output of its predecessor. For example,

Is I grep old I we

When a command finishes execution it returns an exit status
(return code). Conventionally, a zero exit status means that the
command succeeded; nonzero means failure. This Boolean value
may be tested using the if and while constructs provided by the
shell.

The general form of the conditional branch is

if command-list

then command-list

else command-list

fi

The else part is optional. A command-list is a sequence of com-
mands separated by semicolons or newlines and is evaluated from
left to right. The value tested by if is that of the last simple-
command in the command-list following if. Since this construction is
bracketed by if and fi, it may be used unambiguously in any position
that a simple command may be used. This is true of all the
control-flow constructions in the shell. Furthermore, in the case of
if there is no dangling else ambiguity. Apart from considerations of
language design, this is important for interactive use. An Algol 60
style if then else , where the else part is optional, requires look-
ahead to see whether the else part is present. In this case, the shell
would be unable to determine that the if construct was ended until
the next command was read.

The McCarthy "andf" and "orf" operators are also provided for
testing the success of a command and are written && and I ^ respec-
tively.

command, && command2 (1)

executes command2 only if command, succeeds. It is equivalent
to

if command,
then command2
fi
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Conversely,

command , I I command2 (2)

executes command2 only if command , fails. The value returned
by these constructions is the value of the last command executed.
Thus (1) returns true if both command , and command2 succeed,
whereas (2) returns true if either command , or command2
succeeds.

The while loop has a form similar to if.

while command-list,

do command-list2

done

command-list, is executed and its value tested each time around the
loop. This provides a notation for a break in the middle of a loop,
as in

while a; b
do c
done

First a is executed, then b. If b returns false, then the loop exits;
otherwise, c is executed and the loop resumes at a. Although this
deals with many loop breaks, break and continue are also available.
Both take an optional integer argument specifying how many levels
of loop to break from or at which level to continue, the default
being one.

if and while test the value returned by a command. The case
and for constructs provide for data-driven branching and looping.
The case construct is a multi-way branch that has the general form

case word in
pattern) command-list

esac

The shell attempts to match word with each pattern, in the order in
which the patterns appear. If a match is found, the associated
command-list is executed and execution of the case is complete.
Patterns are specified using the following metacharacters.

* Matches any string including the null string.

? Matches any single character.
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[...] Matches any of the enclosed characters. A pair of
characters separated by a minus matches any char-
acter lexically between the pair.

For example, *.c will match any string ending with c. Alternatives
are separated by I , as in

case ... in
xIY)...

which, for single characters, is equivalent to

case ... in
(xy]) ...

There is no special notation for the default case, since it may be
written as

case ... in

esac

Since it is difficult to determine the equivalence of patterns, no
check is made to ensure that only one pattern matches the case
word. This could lead to obscure bugs, although in practice it
appears not to present a problem.

The for loop has the general form

for name in word) word2 ...

do command-list

done

and executes the command-list once for each word following in.
Each time around the loop the shell variable (q.v.) name is set to
the next word.

III. SHELL PROCEDURES

The shell may be used to read and execute commands contained
in a file. For example,

sh file arg , arg2 ...

calls the shell to read commands from file. Such a file is called a
"shell procedure." Arguments supplied with the call are referred to
within the shell procedure using the positional parameters $1,
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$2, .... For example, if the file wg contains

who I grep $1

then

sh wg fred

is equivalent to

who I grep fred

UNIX files have three independent attributes, read, write, and exe-
cute. If the file wg is executable, then

wg fred

is equivalent to

sh wg fred

This allows shell procedures and programs to be used interchange-
ably.

A frequent use of shell procedures is to loop through the argu-
ments ($l,$2,...) executing commands once for each argument.
An example of such a procedure is tel that searches the file
/usr/lib /telnos containing lines of the form

fred mh0123
bert mh0789

The text of tel is

for i

do grep $i < /usr/lib /telnos; done

The default in list for a for loop is the positional parameters. The
command

tel fred bert

prints those lines in /usr/lib/telnos that contain the string fred fol-
lowed by those lines that contain bert.

Shell procedures can be used to tailor the command environment
to the taste and needs of an individual or group. Since procedures
are text files requiring no compilation, they are easy to create and
maintain. Debugging is also assisted by the ability to try out parts of
a procedure at a terminal. To further assist debugging, the shell
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provides two tracing mechanisms . If a procedure is invoked with
the -v flag, as in

sh -v proc

then the shell will print the lines of proc as they are read. This is
useful when checking procedures for syntactic errors, particularly in
conjunction with the -n flag which suppresses command execution.
An execution trace is specified by the -x flag and causes each com-
mand to be printed as it is executed. The -x flag is more useful
than -v when errors in the flow of control are suspected.

During the execution of a shell procedure, the standard input and
output are left unchanged. (In earlier versions of the UNIX shell the
text of the procedure itself was the standard input.) Thus shell pro-
cedures can be used naturally as filters. However, commands some-
times require in-line data to be available to them. A special input
redirection notation "<<" is used to achieve this effect. For exam-
ple, the UNIX editor takes its commands from the standard input.
At a terminal,

ed file

will call the editor and then read editing requests from the terminal.
Within a shell procedure this would be written

ed file <<!
editing requests

The lines between <<! and ! are called a here document; they are
read by the shell and made available as the standard input. The
string ! is arbitrary, the document being terminated by a line that
consists of the string following << . There are a number of advan-
tages to making here documents explicitly visible. First, the number
of lines read from the shell procedure is under the control of the
procedure writer, enabling a procedure to be understood without
having to know what commands such as ed do. Further, since the
shell is the first to see such input, parameter substitution can,
optionally, be applied to the text of the document.

IV. SHELL VARIABLES

The shell provides string-valued variables that may be used both
within shell programs and, interactively, as abbreviations for
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frequently used strings. Variable names begin with a letter and con-
sist of letters, digits, and underscores.

Shell variables may be given values when a shell procedure is
invoked. An argument to a shell procedure of the form
name= value causes value to be assigned to name before execution of

the procedure begins. The value of name in the invoking shell is

not affected. Such names are sometimes called keyword parameters.
Keyword parameters may also be exported from a procedure by

saying, for example,

export user box

Modification of such variables within the called procedure does not
affect the values in the calling procedure. (It is generally true of a
UNIX process that it may not modify the environment of its caller
without explicit request on the part of that caller. Files and shared
file descriptors are the exceptions to this rule.)

A name whose value is intended to remain constant throughout a
procedure may be declared readonly . The form of this command is

the same as that of the export command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.
Within a shell procedure, shell variables are set by writing, for

example,

user=fred

The value of a variable may be substituted by preceding its name
with $; for example,

echo $user

will echo fred. (echo is a standard UNIX command that prints its
arguments, separated by blanks.) The general notation for parameter
(or variable) substitution is

${name}

and is used, for example, when the parameter name is followed by a
letter or digit. If a shell parameter is not set, then the null string is
substituted for it. Alternatively, a default string may be given, as in

echo $(d-.)

which will echo the value of d if it is set and "." otherwise. Substi-
tutions may be nested, so that, for example,
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echo ${d-$1)

will echo the value of d if it is set and the value (if any) of $1 oth-
erwise. A variable may be assigned a default value using the nota-
tion

$(d =.)

which substitutes the same string as

$(d-.)

except that, if d were not previously set, then it will be set to the
string ".". (The notation $(... _...) is not available for positional
parameters.)

In cases when a parameter is required to be set, the notation

$ {d ?message }

will substitute the value of the variable d if it has one, otherwise
message is printed by the shell and execution of the shell procedure
is abandoned. If message is absent then a standard message is
printed. A shell procedure that requires some parameters to be set
might start as follows.

: ${user?} $(acct?) $(bin?)

A colon (:) is a command built in to the shell that does nothing
once its arguments have been evaluated. In this example, if any of
the variables user, acct or bin are not set, then the shell will aban-
don execution of the procedure.

The following variables have a special meaning to the shell.
$? The exit status (return code) of the last command exe-

cuted as a decimal string.
$# The number of positional parameters as a decimal

string.
$$ The UNIX process number of this shell (in decimal).

Since process numbers are unique among all existing
processes, this string is typically used to generate
unique temporary file names (UNix has no genuine
temporary files).

$ ! The process number of the last process initiated in the
background.

$- The current shell flags.

The following variables are used, but not set, by the shell.
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Typically, these variables are set in a profile which is executed when

a user logs on to UNIX.

$MAIL When used interactively, the shell looks at the file
specified by this variable before it issues a prompt. If
this file has been modified since it was last examined,
the shell prints the message you have mail and then
prompts for the next command.

$HOME The default argument (home directory) for the Cd com-
mand. The current directory is used to resolve file
name references that do not begin with a /, and is
changed using the cd command.

$PATH A list of directories that contain commands (the search
path). Each time a command is executed by the shell,
a list of directories is searched for an executable file. If
$PATH is not set, then the current directory, /bin, and
/usr/bin are searched by default. Otherwise $PATH
consists of directory names separated by :. For exam-
ple,

PATH =:/usr/fred/bin :/bin:/usr/bin

specifies that the current directory (the null string
before the first :), /usr/fred/bin, /bin and /usr/bin,
are to be searched, in that order. In this way, indivi-
dual users can have their own "private" commands
accessible independently of the current directory. If the
command name contains a /, then this directory search
mechanism is not used; a single attempt is made to find
the command.

V. COMMAND SUBSTITUTION

The standard output from a command enclosed in grave accents
('...') can be substituted in a similar way to parameters. For exam-
ple, the command pwd prints on its standard output the name of
the current directory. If the current directory is /usr/fred/bin then

d ='pwd'

is equivalent to

d=/usr /fred/bin

The entire string between grave accents is the command to be
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executed and is replaced with the output from that command. This
mechanism allows string-processing commands to be used within
shell procedures. The shell itself does not provide any built-in
string processing other than concatenation and pattern matching.
Command substitution occurs in all contexts where parameter sub-
stitution occurs and the treatment of the resulting text is the same
in both cases.

VI. FILE NAME GENERATION

The shell provides a mechanism for generating a list of file names
that match a pattern. The specification of patterns is the same as
that used by the case construct. For example,

Is -I *.c

generates , as arguments to Is, all file names in the current directory
that end in c.

[a-z]

matches all names in the current directory beginning with one of the
letters a through z.

/usr/srb/test/?

matches all file names in the directory /usr/srb/test consisting of a
single character. If no file name is found that matches the pattern,
then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names
according to some pattern. It may also be used to find files. For
example,

echo /usr/srb/*/core

finds and prints the names of all core files in subdirectories of
/usr/srb . This last feature can be expensive, requiring a scan of all
subdirectories of /usr/srb.

There is one exception to the general rules given for patterns.
The character "." at the start of a file name must be explicitly
matched.

echo *

will therefore echo all file names in the current directory not begin-
ning with ".".
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echo .*

will echo all those file names that begin with ".". This avoids inad-
vertent matching of the names "." and ".." which, conventionally,
mean "the current directory" and "the parent directory" respec-
tively.

VII. EVALUATION AND QUOTING

The shell is a macro processor that provides parameter substitu-
tion, command substitution, and file name generation for the argu-
ments to commands. This section discusses the order in which sub-
stitutions occur and the effects of the various quoting mechanisms.

Commands are initially parsed according to the grammar given in
Appendix A. Before a command is executed, the following evalua-
tions occur.

Parameter substitution, e.g., $user.
Command substitution, e.g., 'pwd'.

The shell does not rescan substituted strings. For example, if the
value of the variable X is the string $x, then

echo $X

will echo $x.
After these substitutions have occurred, the resulting characters

are broken into words (blank interpretation); the null string is not
regarded as a word unless it is quoted. For example,

echo "

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments if the variable null is not set or set
to the null string.

Each word is then scanned for the file pattern characters and
[... ], and an alphabetical list of file names is generated to replace
the word. Each such file name is a separate argument.

Metacharacters such as < > * ? (Appendix B has a complete
list) have a special meaning to the shell. Any character preceded by
a is quoted and loses its special meaning, if any. The \ is elided so
that

echo \?\\
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will echo ?\. To allow long strings to be continued over more than
one line, the sequence \ newline is ignored.

\ is convenient for quoting single characters. When more than
one character needs quoting, the above mechanism is clumsy and
error-prone. A string of characters may be quoted by enclosing
(part of) the string between single quotes, as in

echo '*'

The quoted string may not contain a single quote.
A third quoting mechanism using double quotes prevents

interpretation of some but not all metacharacters. Within double
quotes, parameter and command substitution occurs, but file name
generation and the interpretation of blanks does not. The following
characters have a special meaning within double quotes and may be
quoted using \.

$ parameter substitution
command substitution
ends the quoted string

\ quotes the special characters $ " \

For example,

echo "$x"

will pass the value of the variable x to echo , whereas

echo '$x'

will pass the string $x to echo.
In cases where more than one evaluation of a string is required,

the built-in command eval may be used. eval reads its arguments
(which have therefore been evaluated once) and executes the result-
ing command(s). For example, if the variable X has the value $x,
and if x has the value pqr then

eval echo $X

will echo the string pqr.

VIII. ERROR AND FAULT HANDLING

The treatment of errors detected by the shell depends on the type
of error and on whether the shell is being used interactively. An
interactive shell is one whose input and output are connected to a
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terminal. Execution of a command may fail for any of the following
reasons.

(i) Input output redirection may fail, for example, if a file does
not exist or cannot be created. In this case, the command is
not executed.

(ii) The command itself does not exist or is not executable.
(iii) The command runs and terminates abnormally, for example,

with a "memory fault."
(iv) The command terminates normally but returns a nonzero exit

status.

In all of these cases, the shell will go on to execute the next com-
mand. Except for the last case, an error message will be printed by
the shell.

All remaining errors cause the shell to exit from a command pro-
cedure. An interactive shell will return to read another command
from the terminal. Such errors include the following.

(i) Syntax errors ; e.g., if ... then ... done.
(ii) A signal such as terminal interrupt. The shell waits for the

current command, if any, to finish execution and then either
exits or returns to the terminal.

(iii) Failure of any of the built-in commands such as cd.

The shell flag -e causes the shell to terminate if any error is
detected.

Shell procedures normally terminate when an interrupt is received
from the terminal. Such an interrupt is communicated to a UNIX
process as a signal. If some cleaning-up is required, such as remov-
ing temporary files, the built-in command trap is used. For exam-
ple,

trap 'rm /tmp/ps$$ ; exit' 2

sets a trap for terminal interrupt ( signal 2) and, if this interrupt is
received, will execute the commands

rm /tmp /ps$$; exit

exit is another built-in command that terminates execution of a
shell procedure. The exit is required in this example; otherwise,
after the trap has been taken, the shell would resume executing the
procedure at the place where it was interrupted.

UNIX signals can be handled by a process in one of three ways.
They can be ignored, in which case the signal is never sent to the
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process; they can be caught, in which case the process must decide
what to do; lastly, they can be left to cause termination of the pro-
cess without it having to take any further action. If a signal is being
ignored on entry to the shell procedure, for example, by invoking
the procedure in the background, then trap commands (and the sig-
nal) are ignored.

A shell procedure may, itself, elect to ignore signals by specifying
the null string as the argument to trap. A trap may be reset by say-
ing, for example,

trap 2

which resets the trap for signal 2 to its default value (which is to
exit).

The following procedure scan is an example of the use of trap
without an exit in the trap command. scan takes each directory in
the current directory, prompts with its name, and then executes the
command typed at the terminal. Interrupts are ignored while exe-
cuting the requested commands but cause termination when scan is
waiting for input.

d ='pwd'
for i in
do if test -d $d/$i

then cd $d/$i
while echo "$i:"

trap exit 2

read x

do trap : 2; eval $x; done

done

The command

fi

read x

is built in to the shell and reads the next line from the standard
input and assigns it to the variable x. The command

test -d arg

returns true if arg is a directory and false otherwise.

IX. COMMAND EXECUTION

To execute a command, the shell first creates a new process using
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the system call fork. The execution environment for the command
includes input, output, and the states of signals, and is established in
the created process before the command is executed. The built-in
command exec is used in the rare cases when no fork is required.

The environment for a command run in the background, such as

list *.c I Ipr &

is modified in two ways. First, the default standard input for such a
command is the empty file /dev/null. This prevents two processes
(the shell and the command), that are running in parallel, from try-
ing to read the same input. Chaos would ensue if this were not the
case.

ed file &

would allow both the editor and the shell to read from the same
input at the same time.

The other modification to the environment of a background com-
mand is to turn off the quit and interrupt signals so that they are
ignored by the command. This allows these signals to be used at the
terminal without causing background commands to terminate.
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APPENDIX A

Grammar

item: word
input-output

simple-command: item
simple-command item

command: simple-command
command-list )

{ command-list }
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for name do command- list done
for name in word ... do command- list done
while command-list do command- list done
until command-list do command- list done
case word in case-part ... esac
if command- list then command-list else-part fi

pipeline: command
pipeline I command

andor: pipeline
andor && pipeline
andor I ( pipeline

command-list: andor
command-list ;
command- list &
command-list ; andor
command-list & andor

input-output: > word
>> word
< word
<< word

case-part: pattern) command-list ;;

pattern: word
pattern I word

else-part: elif command-list then command-list else-part
else command-list
empty

empty:

word: a sequence of non - blank characters

name: a sequence of letters , digits or underscores
starting with a letter

digit: 0123456789
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APPENDIX B

Metacharacters and Reserved Words

(i) Syntactic

pipe symbol
"andf" symbol
"orf" symbol
command separator
case delimiter
background commands
command grouping
input redirection
input from a here document
output creation
output append

(ii) Patterns

* matches any character(s) including none
? matches any single character
[...] matches any of the enclosed characters

(iii) Substitution

${...} substitution of shell variables
substitution of command output

(iv) Quoting

quotes the next character
quotes the enclosed characters except for
quotes the enclosed characters except
for $'\"

(v) Reserved words

if then else elif fi
case in esac
for while until do done
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C is a general-purpose programming language that has proven useful
for a wide variety of applications. It is the primary language of the
UNIX* system, and is also available in several other environments. This
paper provides an overview of the syntax and semantics of C and a dis-
cussion of its strengths and weaknesses.

C is a general-purpose programming language featuring economy
of expression, modern control flow and data structure capabilities,
and a rich set of operators and data types.

C is not a "very high-level" language nor a big one and is not spe-
cialized to any particular area of application. Its generality and an
absence of restrictions make it more convenient and effective for
many tasks than supposedly more powerful languages. C has been
used for a wide variety of programs, including the UNIX operating
system, the C compiler itself, and essentially all UNIX applications
software. The language is sufficiently expressive and efficient to
have completely displaced assembly language programming on UNIX.

C was originally written for the PDP-11 under UNIX, but the
language is not tied to any particular hardware or operating system.
C compilers run on a wide variety of machines, including the
Honeywell 6000, the IBM System/370, and the Interdata 8/32.

* UNIX is a trademark of Bell Laboratories.
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I. THE LINGUISTIC HISTORY OF C

The C language in use todayt is the product of several years of
evolution. Many of its most important ideas stem from the consid-
erably older, but still quite vital, language BCPL2 developed by Mar-
tin Richards. The influence of BCPL on C proceeded indirectly
through the language B,3 which was written by Ken Thompson in
1970 for the first UNIX system on the PDP-11.

Although neither B nor C could really be considered dialects of
BCPL, both share several characteristic features with it:

(i) All are able to express the fundamental flow-control construc-
tions required for well-structured programs: statement group-
ing, decision-making (if), looping (while) with the termina-
tion test either at the top or the bottom of the loop, and
branching out to a sequence of possible cases (switch). It is
interesting that BCPL provided these constructions in 1967,
well before the current vogue for "structured programming."

(ii) All three languages include the concept of "pointer" and pro-
vide the ability to do address arithmetic.

(iii) In all three languages, the arguments to functions are passed
by copying the value of the argument, and it is impossible for
the function to change the actual argument. When it is
desired to achieve "call by reference," a pointer may be
passed explicitly, and the function may change the object to
which the pointer points. Any function is allowed to be
recursive, and its local variables are typically "automatic" or
specific to each invocation.

(iv) All three languages are rather low-level, in that they deal with
the same sorts of objects that most computers do. BCPL and B
restrict their attention almost completely to machine words,
while C widens its horizons somewhat to characters and (pos-
sibly multi-word) integers and floating-point numbers. None
deals directly with composite objects such as character strings,
sets, lists, or arrays considered as a whole. The languages
themselves do not define any storage allocation facility beside
static definition and the stack discipline provided by the local
variables of functions; likewise, I/O is not part of any of these
languages. All these higher mechanisms must be provided by
explicitly called routines from libraries.

B and BCPL differ mainly in their syntax, and many differences
stemmed from the very small size of the first B compiler (fewer
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than 4K 18-bit words on the PDP-7). Several constructions in BCPL
encourage a compiler to maintain a representation of the entire pro-
gram in memory. In BCPL, for example,

valof $(

resultis expression

$)

is syntactically an expression. It provides a way of packaging a block

of many statements into a sort of unnamed internal procedure yield-

ing a single result (delivered by the resultis statement). The valof

construction can occur in the middle of any expression, and can be

arbitrarily large. The B language avoided the difficulties caused by

this and some other constructions by rigorously simplifying (and in

some cases adjusting to personal taste) the syntax of BCPL.

In spite of many syntactic changes, B remained very close to BCPL
semantically. The most characteristic feature of both languages is
their nearly identical treatment of addresses (pointers). They sup-
port a model of the storage of the machine consisting of a sequence
of equal-sized cells, into which values can be placed; in typical
implementations, these cells will be machine words. Each identifier
in a program corresponds to a cell, and a cell may contain a variety
of values. Most often the value is an integer, or perhaps a represen-
tation of a character. All the cells, however, are numbered; the
address of a cell is just the integer giving its ordinal position. BCPL
has a unary operator Iv (in some versions, and also in B and C,
shortened to &) that, when applied to a name, yields the address of
the cell corresponding to the name. The inverse operator rv (later
•) yields the value in the cell pointed to its argument. Thus the

statement

px = &x;

of B assigns to px the number that can be interpreted as the address
of x; the statements

y = •px + 2;

•px = 5;

first use the value in the cell pointed to by px (which is the same
cell as x) and then assign 5 to this cell.

Arrays in BCPL and B are intimately tied up with pointers. An
array declaration, which might in BCPL be written
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let Array = vec 10

and in B

auto Array[l01;

creates a single cell named Array and initializes it with the address
of the first of a sequence of 10 unnamed cells containing the array
itself. Since the quantity stored in Array is just the address of the
cell of the first element of the array, the expression

Array + i

is the address of the ith element, counting from zero. Likewise,
applying the indirection operator,

* (Array + I)

refers to the value of the ith member of the array. This operation is
so frequent that special syntax was invented to express it:

Array [ii

Thus, despite its asymmetric appearance, subscripting is a commuta-
tive operation; the above example could equally well be written

i [Array]

In BCPL and B there is only one type of object, the machine word,
so when the same language operator is applied to two operands, the
calculation actually carried out must always be the same. Thus, for
example, if one wishes to provide the ability to do floating-point
arithmetic, the "+" operator notation cannot be used, since it
implies an integer addition. Instead (in a version of BCPL for the GE
635), a "." was placed in front of each operator that had floating-
point operands. As may be appreciated, this was a frequent source
of errors.

The machine model implied by the definitions of BCPL and B is
simple and self-consistent. It is, however, inadequate for many pur-
poses, and on many machines it causes inefficiencies when imple-
mented. The problems became evident to us after B began to be
used heavily on the first PDP-11 version of UNIx. The first followed
from the fact that the PDP-11, like a number of machines (including,
for example, the IBM System/370), is byte addressed; a machine
address refers to any of several bytes (characters) in a word, not the
word alone. Most obviously, the word orientation of B cut us off
from any convenient ability to access individual bytes. Equally
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important was the fact that before any address could be used, it had
to be shifted left by one place. The reason for this is simple: there
are two bytes per PDP-11 word. On the one hand, the language
guaranteed that if 1 was added to an address quantity, it would point
to the next word; on the other, the machine architecture required
that word addresses be even and equal to the byte number of the
first byte in the word. Since, finally, there was no way to distinguish
cells containing ordinary integers from those containing pointers, the
only solution visible was to represent pointers as word numbers and
then, at the point of use, convert to the byte representation by mul-
tiplication by 2.

Yet another problem was introduced by the desire to provide for
floating-point arithmetic. The PDP-11 supports two floating-point
formats, one of which requires two words, the other four. In nei-
ther case was it satisfactory to use the trick used on the GE 635
(operators like ".+") because there was no way to represent the
requirement for a single data item occupying four or eight bytes.
This problem did not arise on the 635 because integers and single-
precision floating-point both require only one word.

Thus the problems evidenced by B led us to design a new
language that (after a brief period under the name NB) was dubbed
C. The major advance provided by C is its typing structure, which
completely solved the difficulties mentioned above. Each declara-
tion in a C program specifies (sometimes implicitly) a type, which
determines how much storage the object requires and how it is to be
interpreted. The original fundamental types provided were single
character (byte), integer, single-precision floating-point, and
double-precision floating-point. (Others discussed below were added
later.) Thus in the program

double a, b;

a = b + 3;

the compiler is able to determine from the declarations of a and b
the fact that they require four words of storage each, that the "+"
means a double-precision floating add, and that "3" must be con-
verted to floating.

Of course, the idea of typing variables is in no way original with
C; in fact, it was the general rule among the most widely used and
influential languages, including Algol, Fortran, and PL/1. Neverthe-
less, the introduction of types marked an important change in our
own thinking. The typeless nature of BCPL and B had seemed to
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promise a great simplification in the implementation, understanding,
and use of these languages. By the time that C was created (circa
1972), advocates of languages like Algol 68 and Pascal recom-
mended a strongly enforced type structure on psychological grounds;
but even disregarding their arguments, the typeless nature of BCPL
and B seemed inappropriate, for purely technological reasons, to the
available hardware.

II. THE TYPE STRUCTURE OF C

The introduction of types in C, although a major departure from
the tradition of BCPL and B, was done in such a way that many of
the characteristic usages of the earlier languages survived. To some
extent, this continuity was an attempt to preserve as much as possi-
ble of the considerable corpus of existing software written in B, but
even more important, especially in retrospect, was the desire to
minimize the intellectual distance between the past and the future
ways of expression.

2.1 Pointers, arrays and address arithmetic

One clear example of the similarity of C to the earlier languages is
its treatment of pointers and arrays. In C an array of 10 integers
might be declared

int Array[101;

which is identical to the corresponding declaration in B. (Arrays
begin at zero; the elements of Array are Array[0], ..., Array[91.) As
discussed above, the B implementation caused a cell named Array to
be allocated and initialized with a pointer to 10 otherwise unnamed
cells to hold the array. In C, the effect is a bit different; 10 integers
are allocated, and the first is associated with the name Array. But C
also includes a general rule that, whenever the name of an array
appears in an expression, it is converted to a pointer to the first
member of the array. Strictly speaking, we should say, for this
example, it is converted to an integer pointer since all C pointers are
associated with a particular type to which they point. In most
usages, the actual effects of the slightly different meanings of Array
are indistinguishable. Thus in the C expression

Array + i

the identifier Array is converted to a pointer to the first element of
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the array; i is scaled (if required) before it is added to the pointer.
For a byte-addressed machine, the scale factor is the number of
bytes in an integer; for a word-addressed machine the scale factor is
unity. In any event, the result is a pointer to the ith member of the
array. Likewise identical in effect to the interpretation of B,

* (Array + i)

is the ith member itself, and

Array[i]

is another notation for the same thing. In all these cases, of course,
should Array be an array of, or pointer to, some objects other than
integers, the scale factor is adjusted appropriately. The pointer
arithmetic, as written, is independent of the type of object to which
the pointer points and indeed of the internal representation of the
pointer.

2.2 Derived types

As mentioned above, the basic types in C were originally int,
which represents an integer in the basic size provided by the
machine architecture; char, which represents a single byte; float, a
single-precision floating-point number; and double, double-precision
floating-point. Over the years, long, short, and unsigned integers
have been added. In current C implementations, long is at least 32
bits; short is usually 16 bits; and int remains the "natural" size for
the machine at hand. Unsigned integers exist mainly to squeeze an
extra bit out of the machine, since the sign bit need not be
represented.

In addition to these basic types, C provides a conceptually infinite
hierarchy of derived types, which are formed by composition of the
basic types with pointers, arrays, structures, unions, and functions.
Examples of pointer and array declarations have already been exhi-
bited; another is

double *vecp, vector[100];

which declares a pointer vecp to double-precision floating numbers,
and an array vector of the same kind of objects. The size of an
array, when specified, must always be a constant.

A structure is an aggregate of one or more objects, usually of vari-
ous types, which can be treated as a unit. C structures are essen-
tially the same as records in languages like Pascal, and semantically,
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though not syntactically, like PL/1 and Cobol structures. Thus,

struct tag

int i;
float f;
char c[31;

1;

defines a template, called tag, for a structure containing three
members: an integer i, a floating point number f, and a three-
character array c. The declaration

struct tag x, y[10], sp;

declares a structure x of this type, an array y of 10 such structures,
and a pointer p to this kind of structure. The hierarchical nature of
derived types is clearly evident here: y is an array of structures
whose members include an array of characters. References to indi-
vidual members of structures use the . operator:

Parentheses in the last line are necessary because the . binds more
tightly than •. It turns out that pointers to structures are so com-
mon that special syntax is called for to express structure access
through a pointer.

p->c[1l

p- >i

This soon becomes more natural than the equivalent

(sP)•c[1]

(-P).i

A union is capable of holding, at different times, objects of
different types, with the compiler keeping track of size and align-
ment requirements. Unions provide a way to manipulate different
kinds of data in a single part of storage, without embedding
machine-dependent information (like the relative sizes of int and
float) in a program. For example, the union u, declared
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union {
int i;
float f;

) u;

can hold either an int (written u.i) or a float (written u.f). Regard-
less of the machine it is compiled on, it will be large enough to hold
either one of these quantities. A union is syntactically identical to a
structure; it may be considered as a structure in which all the
members begin at the same offset. Unions in C are more analogous
to PL/I's CELL than to the unions of Algol 68 or the variant records
of Pascal, because it is the responsibility of the programmer to avoid
referring to a union that does not currently contain an object of the
implied type.

A function is a subprogram that returns an object of a given type:

unsigned unsf();

declares a function that returns unsigned . The type of a function
ignores the number and types of its arguments, although in general
the call and the definition must agree.

2.3 Type composition

The syntax of declarations borrows from that of expressions. The
key idea is that a declaration, say

int ... ,

contains a part " ..." that, if it appeared in an expression, would be
of type int. The constructions seen so far, for example,

int •iptr;

int ifunc();

int iarr[10];

exhibit this approach, but more complicated declarations are com-
mon. For example,

int •funcptr();

int (•ptrfunc)();

declare respectively a function that returns a pointer to an integer,
and a pointer to a function that returns an integer. The extra
parentheses in the second are needed to make the * apply directly to
ptrfunc , since the implicit function-call operator () binds more
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tightly than •. Functions are not variables, so arrays or structures of
functions are not permitted. However, a pointer to a function, like
ptrfunc,, may be stored, copied, passed as an argument, returned by
a function, and so on, just as any other pointer.

Arrays of pointers are frequently used instead of multi-
dimensional arrays. The usage of a and b when declared

int a[101[101;

int •b[10];

may be similar, in that a[5][51 and b[5][5] are both legal references
to a single int, but a is a true array: all 100 storage cells have been
allocated, and the conventional rectangular subscript calculation is
done. For b, however, the declaration has only allocated 10
pointers; each must be set to point to an array of integers. Assum-
ing each does point to a 10-element array, then there will be 100
storage cells set aside, plus the 10 cells for the pointers. Thus the
array of pointers uses slightly more space and may require an extra
initialization step, but has two advantages: it trades an indirection
for a subscript multiplication, and it permits the rows of the array to
be of different lengths. (That is, each element of b need not point
to a 10-element vector; some may point to 2 elements, some to 20).
Particularly with strings whose length is not known in advance, an
array of pointers is often used instead of a multidimensional array.
Every C main program gets access to its invoking command line in
this form, for example.

The idea of specifying types by appropriating some of the syntax
of expressions seems to be original with C, and for the simpler
cases, it works well. Occasionally some rather ornate types are
needed, and the declaration may be a bit hard to interpret. For
example, a pointer to an array of pointers to functions, each return-
ing an int, would be written

int (•(.funnyarray)[])O;

which is certainly opaque, although understandable enough if read
from the inside out. In an expression, funnyarray might appear as

i = (=(=funnyarray )[ j])(k);

The corresponding Algol 68 declaration is

ref [] ref pros int funnyarray

which reads from left to right in correspondence with the informal
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description of the type if ref is taken to be the equivalent of C's
"pointer to." The Algol may be clearer, but both are hard to grasp.

Ill. STATEMENTS AND CONTROL FLOW

Control flow in C differs from other languages primarily in details
of syntax. As in PL/I, semicolons are used to terminate statements,
not to separate them. Most statements are just expressions followed
by a semicolon; since assignments are expressions, there is no need
for a special assignment statement.

Statements are grouped with braces { and ), rather than with

words like begin-end or do-od, because the more concise form
seems much easier to read and is certainly easier to type. A
sequence of statements enclosed in {) is syntactically a single state-
ment.

The if-else statement has the form

if (expression)

statement

else
statement

The expression is evaluated; if it is "true" (that is, if expression has a

non-zero value), the first statement is done. If it is "false" (expres-

sion is zero) and if there is an else part, the second statement is
executed instead. The else part is optional; if it is omitted in a
sequence of nested if's, the resulting ambiguity is resolved in the
usual way by associating the else with the nearest previous else-less

if.
The switch statement provides a multi-way branch depending on

the value of an integer expression:

switch (expression) {

case const:

code

case const:

code

default:
code

The expression is evaluated and compared against the various cases,
which are labeled with distinct integer constant values. If any case
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matches, execution begins at that point. If no case matches but
there is a default statement, execution begins there; otherwise, no
part of the switch is executed.

The cases are just labels, and so control may flow through one
case to the next. Although this permits multiple labels on cases, it
also means that in general most cases must be terminated with an
explicit exit from the switch (the break statement below).

The switch construction is part of C's legacy from BCPL; it is so
useful and so easy to provide that the lack of a corresponding facility
of acceptable generality in languages ranging from Fortran through
Algol 68, and even to Pascal (which does not provide for a default),
must be considered a real failure of imagination in language
designers.

C provides three kinds of loops. The while is simply

while (expression)

statement

The expression is evaluated; if it is true (non-zero), the statement is
executed, and then the process repeats. When expression becomes
false (zero), execution terminates.

The do statement is a test-at-the-bottom loop:

do
statement

while (expression);

statement is performed once, then expression is evaluated. If it is
true, the loop is repeated; otherwise it is terminated.

The for loop is reminiscent of similarly named loops in other
languages, but rather more general. The for statement

for (exprl ; expr2; expr3)

statement

is equivalent to

exprl;

while (expr2) {

statement
expr3;

}

Grammatically , the three components of a for loop are expressions.
Any of the three parts can be omitted , although the semicolons
must remain . If exprl or expr3 is left out , it is simply dropped from
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the expansion . If the test , expr2, is not present , it is taken as per-
manently true, so

for (;;) {

is an "infinite" loop, to be broken by other means, for example by
break, below.

The for statement keeps the loop control components together
and visible at the top of the loop, as in the idiomatic

for (i = 0; i < N ; i = i+1)

which processes the first N elements of an array, the analogue of the
Fortran or PL/I DO loop. The for is more general, however. The
test is re-evaluated on each pass through the loop, and there is no
restriction on changing the variables involved in any of the expres-
sions in the for statement. The controlling variable i retains its
value regardless of how the loop terminates. And since the com-
ponents of a for are arbitrary expressions, for loops are not
restricted to arithmetic progressions. For example, the classic walk
along a linked list is

for (p = top ; p != NULL; p = p->next)

There are two statements for controlling loops. The break state-
ment, as mentioned, causes an immediate exit from the immediately
enclosing while, for, do or switch. The continue statement causes
the next iteration of the immediately enclosing loop to begin.
break and continue are asymmetric, since continue does not apply
to switch.

Finally, C provides the oft-maligned goto statement. Empirically,
goto's are not much used, at least on our system. The operating
system itself, for example, contains 98 in some 8300 lines. The
PDP-11 C compiler, in 9660 lines, has 147. Essentially all of these
implement some form of branch to the top or bottom of a loop, or
to error recovery code.

IV. OPERATORS AND EXPRESSIONS

C has been characterized as having a relatively rich set of opera-

tors. Some of these are quite conventional. For example, the basic
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binary arithmetic operators are +, -, * and /. To these, C adds the
modulus operator %; m%n is the remainder when m is divided by n.

Besides the basic logical or bitwise operators & (bitwise AND), and
(bitwise OR), there are also the binary operators ^ (bitwise

exclusive OR), > > (right shift), and < < (left shift), and the
unary operator - (ones complement). These operators apply to all
integers; C provides no special bit-string type.

The relational operators are the usual >, >=, <, <=,
(equality test), and != (inequality test). They have the value I if
the stated relation is true, 0 if not.

The unary pointer operators * (for indirection) and & (for taking
the address) were described in Section I. When y is such as to
make the expressions &*y or &*y legal, either is just equal to y.
Note that & and * are used as both binary and unary operators (with
different meanings).

The simplest assignment is written =, and is used conventionally:
the value of the expression on the right is stored in the object whose
address is on the left. In addition, most binary operators can be
combined with assignment by writing

a op= b

which has the effect of

a = a op b

except that a is only evaluated once. For example,

x += 3

is the same as

if x is just a variable, but

p[i+j+1] += 3

adds 3 to the element selected from the array p, calculating the sub-
script only once, and, more importantly, requiring it to be written
out only once. Compound assignment operators also seem to
correspond well to the way we think; "add 3 to x" is said, if not
written, much more commonly than "assign x+3 to x."

Assignment expressions have a value, just like other expressions,
and may be used in larger expressions. For example, the multiple
assignment

2004 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978



i = j = k = 0;

is a byproduct of this fact, not a special case. Another very com-
mon instance is the nesting of an assignment in the condition part
of an if or a loop, as in

while ((c = getchar ()) != EOF) ...

which fetches a character with the function getchar , assigns it to c,
then tests whether the result is an end of file marker. (Parentheses
are needed because the precedence of the assignment = is lower
than that of the relational ! =.)

C provides two novel operators for incrementing and decrement-
ing variables. The increment operator + + adds 1 to its operand;
the decrement operator - - subtracts 1. Thus the statement

++i;

increments i. The unusual aspect is that + + and - - may be used
either as prefix operators (before the variable , as in + + i), or

postfix (after the variable : i++). In both cases , the effect is to
increment i. But the expression + + i increments i before using its
value , while i + + increments i after its value has been used. If i is
5, then

sets x to 5, but

sets x to 6. In both cases, i becomes 6.
For example,

stack [!++] = ... ,

pushes a value on a stack stored in an array stack indexed by i,
while

.. = stack[--!l;

retrieves the value and pops the stack. Of course, when the quantity
incremented or decremented is a pointer, appropriate scaling is
done, just as if the "1" were added explicitly:

•stackp ++ = ... ;

... = •--stackp;
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are analogous to the previous example, this time using a stack
pointer instead of an index.

Tests may be combined with the logical connectives && (AND),
(OR), and ! ( truth value negation ). The && and I operators guaran-
tee left - to-right evaluation , with termination as soon as the truth
value is known . For example , in the test

if (i <= N && array[i] > 0) ...

if i is greater than N, then array[i] (presumably at that point an
out-of-bounds reference) will not be accessed. This predictable
behavior is especially convenient, and much preferable to the expli-
citly random order of evaluation promised by most other languages.
Most C programs rely heavily on the properties of && and 11.

Finally, the conditional expression, written with the ternary operator
? :, provides an analogue of if-else in expressions. In the expres-
sion

el ? e2 : e3

the expression el is evaluated first. If it is non-zero (true), then the
expression e2 is evaluated, and that is the value of the conditional
expression. Otherwise, e3 is evaluated, and that is the value. Only
one of e2 and e3 is evaluated. Thus to set z to the maximum of a
and b,

z = (a > b) ? a : b; /* z = max (a, b) •/

We have already discussed how integers are scaled appropriately in
pointer arithmetic. C does a number of other automatic conversions
between data types, more freely than Pascal, for example, but
without the wild abandon of PL/I. In all contexts, char variables
and constants are promoted to int. This is particularly handy in
code like

n = c - '0';

which assigns to n the integer value of the character stored in c, by
subtracting the value of the character '0'. Generally, in fact, the
basic types fall into only two classes, integral and floating-point;
char variables, and the various lengths of int's, are taken to be
representations of the same kind of thing. They occupy different
amounts of storage but are essentially compatible. Boolean values
as such do not exist; relational or truth-value expressions have value
1 if true, and 0 if false.

Variables of type int are converted to floating-point when
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combined with floats or doubles and in fact all floating arithmetic is
carried out in double precision, so floats are widened to double in

expressions.
Conversions that involve "narrowing" an expression (for exam-

ple, when a longer value is assigned to a shorter) are also well
behaved. Floating point values are converted to integer by trunca-
tion; integers convert to shorter integers or characters by dropping

high-order bits.
When a conversion is desired, but is not implicit in the context, it

is possible to force a conversion by an explicit operator called a cast.

The expression

(type) expression

is a new expression whose type is that specified in type. For exam-

ple, the sin routine expects an argument of type double; in the

statement

x = sin((double) n);

the value of n is converted to double before being passed to sin.

V. THE STRUCTURE OF C PROGRAMS

Complete programs consist of one or more files containing func-
tion and data declarations. Thus, syntactically, a program is made
up of a sequence of declarations; executable code appears only
inside functions. Conventionally, the run-time system arranges to
call a function named main to start execution.

The language distinguishes the notions of declaration and

definition. A declaration merely announces the properties of a vari-
able (like its type); a definition declares a variable and also allocates
storage for it or, in the case of a function, supplies the code.

5.1 Functions

The notion of function in C includes the subroutines and functions
of Fortran and the procedures of most other languages. A function
call is written

name (arglist)

where the parentheses are required even if the argument list is
empty. All functions may be used recursively.

Arguments are passed by value, so the called function cannot in
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any way affect the actual argument with which it was called. This
permits the called program to use its formal arguments as con-
veniently initialized local variables. Call by value also eliminates the
class of errors, familiar to Fortran programmers, in which a constant
is passed to a subroutine that tries to alter the corresponding argu-
ment. An array name as an actual argument, however, is converted
to a pointer to the first array element (as it always is), so the effect
is as if arrays were called by reference; given the pointer, the called
function can work its will on the individual elements of the array.
When a function must return a value through its argument list, an
explicit pointer may be passed, and the function references the ulti-
mate target through this pointer. For example, the function
swap(pa, pb) interchanges two integers pointed to by its arguments:

swap(px, py) Is flip int's pointed to by px and py •/
int spx, •py;
(

int temp;

temp = =px;

•px = spy;
spy = temp;

This also demonstrates the form of a function definition: the name
is followed by an argument list; the arguments are declared, and the
body of the function is a block, or compound statement, enclosed in
braces. Declarations of local variables may follow the opening
brace.

A function returns a value by

return expression;

The expression is automatically coerced to the type that the function
returns. By default, functions are assumed to return int; if this is
not the case, the function must be declared both in the calling rou-
tine and when it is defined. For example, a function definition is

double sqrt (x) Is returns square root of x ►/
double x;

}

In the caller, the declaration is
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double y, sgrt();

y = sqrt(y);

A function argument may be any of the basic types or a pointer,
but not an array, structure, union, or function. The same is true of
the value returned by a function. (The most recent versions of the
language, still not standard everywhere, permit structures and
unions as arguments and values of functions and allow them to be
assigned.)

5.2 Data

Data declared at the top level (that is, outside the body of any
function definition) are static in lifetime, and exist throughout the
execution of the program. Variables declared within a function body
are by default automatic: they come into existence when the func-
tion is entered and vanish when it is exited. Automatic variables
may be declared to be register variables; when possible they will be
placed in machine registers, which may result in smaller, faster
code. The register declaration is only considered a hint to the com-
piler; no hardware register names are mentioned, and the hint may
be ignored if the compiler wishes.

Static variables exist throughout the execution of a program, and
retain their values across function calls. Static variables may be local
to a function or (if defined at the top level) common to several
functions.

External variables have the same lifetime as static, but they are
also accessible to programs from other source files. That is, all
references to an identically named external variable are references to
the same thing.

The "storage class" of a variable can be explicitly announced in its
declaration:

static int x;
extern double y[10];

More often the defaults for the context are sufficient. Inside a func-
tion, the default is auto (for automatic). Outside a function, at the
top level, the default is extern. Since automatic and register vari-
ables are specific to a particular call of a particular function, they
cannot be declared at the top level. Neither top-level variables nor
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functions explicitly declared static are visible to functions outside
the file in which they appear.

5.3 Scope

Declarations may appear either at the top level or at the head of a
block (compound statement). Declarations in an inner block tem-
porarily override those of identically named variables outside. The
scope of a declaration persists until the end of its block, or until the
end of the file, if it was at the top level.

Since function definitions may be given only at the top level (that
is, they may not be nested), there are no internal procedures. They
have been forbidden not for any philosophical reason, but only to
simplify the implementation. It has turned out that the ability to
make certain functions and data invisible to programs in other files
(by explicitly declaring them static) is sufficient to provide one of
their most important uses, namely hiding their names from other
functions. (However, it is not possible for one function to access
the internal variables of another, as internal procedures could do.)
Similarly, the ability to conceal functions and data in one file from
access by another satisfies some of the most crucial requirements of
modular programming (as in languages like Alphard, CLU, and
Euclid), even though it does not satisfy them all.

VI. C PREPROCESSOR

It is well recognized that "magic numbers" in a program are a sign
of bad programming. Most languages, therefore, provide a way to
define symbolic names for constants, so that the value of a magic
number need be specified in only one place, and the rest of the code
can refer to the value by some mnemonic name. In C such a
mechanism is available, but it is not part of the syntax of the
language; instead, symbolic naming is provided by a macro prepro-
cessor automatically invoked as part of every C compilation. For
example, given the definitions

#define P1 3.14159
#define E 2.71284

the preprocessor replaces all occurrences of a defined name by the
corresponding defining string. (Upper-case names are normally
chosen to emphasize that these are not variables.) Thus, when the
programmer recognizes that he has written an incorrect value for e,
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only the definition line has to be changed to

#define E 2.71828

instead of each instance of the constant in the program.
Providing this service by a macro processor instead of by syntax

has some significant advantages. The replacement text is not
restricted to being numbers; any string of characters is permitted.
Furthermore, the token being replaced need not be a variable,
although it must have the form of a name. For example, one can
define

#define forever for (; ; )

and then write infinite loops as

forever

}

The macro processor also permits macros to have arguments; this
capability is heavily used by some I/O packages.

A second service of the C preprocessor is library file inclusion: a
source line of the form

#include "name"

causes the contents of the file name to be interpolated into the
source at that point. (includes may be nested.) This feature is
much used, especially in larger programs, for making sure that all
the source files of the program are supplied with identical #defines,
global data declarations, and the like.

VII. ENVIRONMENTAL CONSIDERATIONS

By intent, the C language confines itself to facilities that can be
mapped relatively efficiently and directly into machine instructions.
For example, writing matrix operations that look exactly like scalar
operations is possible in some programming languages and occasion-
ally misleads programmers into believing that matrix operations are
as cheap as scalar operations. More important, restricting the
domain of the C compiler to those areas where it knows how to do a
relatively effective job provides the freedom to design subroutine
libraries for the remaining tasks without constraining them to fit into
some language specification. When the compiler cannot implement
some facility without heavy costs in nonportability, complexity, or
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efficiency, there are many benefits to leaving out such a facility: it
simplifies the language and the compiler, frequently without incon-
veniencing the user (who often rejects a high-cost built-in operation
and does it himself anyway).

At present, C is restricted to simple operations on simple data
types. As a result, although the C area of operation is comparatively
clean and pleasant, the user must know something about the pollut-
ing effects of the environment to get most jobs done. A program
can always access the raw system calls on each system if very close
interaction with the operating system is needed, but standard library
routines have been implemented in each C environment that try to
encourage portability while retaining speed and flexibility. The basic
areas covered by the standard library at present are storage alloca-
tion, string handling, and I/O. Additional libraries and utilities are
available for such areas as graphics, coroutine sequencing, execution
time monitoring, and parsing.

The only automatic storage management service provided by C
itself is the stack discipline for automatic variables. Two subrou-
tines exist for more flexible storage handling. The function
calloc (n, s) returns a pointer to a properly aligned storage block
that will hold n items each of which is s bytes long. Normally s is
obtained from the sizeof pseudo-function, a compile-time function
that yields the size in bytes of a variable or data type. To return a
block obtained from calloc to the free storage pool, cfree (p) may
be called, where p is a value returned by a previous call to calloc.

Another set of routines deals with string handling. There is no
"string" data type, but an array of characters, with a convention that
the end of a string is indicated by a null byte, can be used for the
same purpose. The most commonly used string routines perform
the functions of copying one string to another, comparing two
strings, and computing a string length. More sophisticated string
operations can often be performed using the I/O routines, which are
described next.

Most of the routines in the standard library deal with input and
output. Most C programmers use stream I/O, although there is no
reason why record I/O could not be used with the language. There
are three default streams: the standard input, the standard output,
and the error output. The most elementary routines for dealing

with these streams are getchar () which reads a character from the
standard input, and putchar(c), which writes the character c on the
standard output. In the environments in which C programs run, it
is generally possibly to redirect these streams to files or other
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programs ; the program itself does not change and is unaware of the

redirection.
The most common output function is printf (format , datal,

data2 , ...), which performs data conversion for formatted output.
The string format is copied to the standard output, except that when
a conversion specification introduced by a % character is found in
format it is replaced by the value of the next data argument, con-
verted according to the specification. For example,

printf("n = %d, x = %f", n, x);

prints n as a decimal integer and x as a floating point number, as in

n = 17, x = 12.34

A similar function scanf performs formatted input conversion.
All the routines mentioned have versions that operate on streams

other than the standard input or output, and printf and scanf vari-
ants may also process a string, to allow for in-memory format
conversion. Other routines in the I/O library transmit whole lines
between memory and files, and check for error or end-of-file status.

Many other routines and utilities are used with C, somewhat more
on UNIX than on other systems. As an example, it is possible to
compile and load a C program so that when the program is run, data
are collected on the number of times each function is called and
how long it executes. This profile pinpoints the parts of a program
that dominate the run-time.

VIII. EXPERIENCE WITH C

C compilers exist for the most widely used machines at Bell
Laboratories (the IBM S/370, Honeywell 6000, PDP-I1) and perhaps
10 others. Several hundred programmers within Bell Laboratories
and many outside use C as their primary programming language.

8.1 Favorable experiences

C has completely displaced assembly language in UNIX programs.
All applications code, the C compiler itself, and the operating sys-
tem (except for about 1000 lines of initial bootstrap, etc.) are writ-
ten in C. Although compilers or interpreters are available under
UNIX for Fortran, Pascal, Algol 68, Snobol, APL, and other
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languages, most programmers make little use of them. Since C is a
relatively low-level language, it is adequately efficient to prevent
people from resorting to assembler, and yet sufficienctly terse and
expressive that its users prefer it to PL/I or other very large
languages.

A language that doesn't have everything is actually easier to pro-
gram in than some that do. The limitations of C often imply shorter
manuals and easier training and adaptation. Language design, espe-
cially when done by a committee, often tends toward including all
doubtful features, since there is no quick answer to the advocate
who insists that the new feature will be useful to some and can be
ignored by others. But this results in long manuals and hierarchies
of "experts" who know progressively larger subsets of the language.
In practice, if a feature is not used often enough to be familiar and
does not complete some structure of syntax or semantics, it should
probably be left out. Otherwise, the manual and compiler get bulky,
the users get surprises, and it becomes harder and harder to main-
tain and use the language. It is also desirable to avoid language
features that cannot be compiled efficiently; programmers like to
feel that the cost of a statement is comparable to the difficulty in
writing it. C has thus avoided implementing operations in the
language that would have to be performed by subroutine call. As
compiler technology improves, some extensions (e.g., structure
assignment) are being made to C, but always with the same princi-
ples in mind.

One direction for possible expansion of the language has been
explicitly avoided. Although C is much used for writing operating
systems and associated software, there are no facilities for multipro-
gramming, parallel operations, synchronization, or process control.
We believe that making these operations primitives of the language
is inappropriate, mostly because language design is hard enough in
itself without incorporating into it the design of operating systems.
Language facilities of this sort tend to make strong assumptions
about the underlying operating system that may match very poorly
what it actually does.

8.2 Unfavorable experiences

The design and implementation of C can (or could) be criticized
on a number of points. Here we discuss some of the more vulner-
able aspects of the language.

2014 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978



8.2.1 Language level

Some users complain that C is an insufficiently high-level
language; for example, they want string data types and operations,
or variable-size multi-dimensional arrays, or generic functions.
Sometimes a suggested extension merely involves lifting some
restriction. For example, allowing variable-size arrays would actually
simplify the language specification, since it would only involve
allowing general expressions in place of constants in certain con-
texts.

Many other extensions are plausible; since the low level of C was
praised in the previous section as an advantage of the language,
most will not be further discussed. One is worthy of mention, how-
ever. The C language provides no facility for I/O, leaving this job
to library routines. The following fragment illustrates one difficulty
with this approach:

printf("%d\n", x);

The problem arises because on machines on which int is not the
same as long, x may not be long; if it were, the program must be
written

printf("%D\n", x);

so as to tell printf the length of x. Thus, changing the type of x
involves changing not only its declaration, but also other parts of the
program. If I/O were built into the language, the association
between the type of an expression and the format in which it is
printed could be reconciled by the compiler.

8.2.2 Type safety

C has traditionally been permissive in checking whether an
expression is used in a context appropriate to its type. A complete
list of examples would be long, but two of the most important
should illustrate sufficiently. The types of formal arguments of
functions are in general not known, and in any case are not checked
by the compiler against the actual arguments at each call. Thus in
the statement

s = sin(1);

the fact that the sin routine takes a floating-point argument is not
noticed until the erroneous result is detected by the programmer.
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In the structure reference

p- >memb

p is simply assumed to point to a structure of which memb is a
member; p might even be an integer and not a pointer at all.

Much of the explanation, if not justification, for such laxity is the
typeless nature of C's predecessor languages. Fortunately, a
justification need no longer be attempted, since a program is now
available that detects all common' type mismatches. This utility,
called lint because it picks bits of fluff from programs, examines a
set of files and complains about a great many dubious constructions,
ranging from unused or uninitialized variables through the type
errors mentioned. Programs that pass unscathed through lint enjoy
about as complete freedom from type errors as do Algol 68 pro-
grams, with a few exceptions: unions are not checked dynamically,
and explicit escapes are available that in effect turn off checking.

Some languages, such as Pascal and Euclid, allow the writer to
specify that the value of a given variable may assume only a given
subrange of the integers. This facility is often connected with the
usage of arrays, in that any array index must be a variable or expres-
sion whose type specifies a subset of the set given by the bounds of
the array. This approach is not without theoretical difficulties, as
suggested by Habermann.4 In itself it does not solve the problems
of variables assuming unexpected values or of accessing outside
array bounds; such things must (in general) be detected dynami-
cally. Still, the extra information provided by specifying the permis-
sible range for each variable provides valuable information for the
compiler and any verifier program. C has no corresponding facility.

One of the characteristic features of C is its rather complete
integration of the notion of pointer and of address arithmetic. Some
writers, notably Hoare,5 have argued against the very notion of
pointer. We feel, however, that the facilities offered by pointers are
too valuable to give up lightly.

8.2.3 Syntax peculiarities

Some people are annoyed by the terseness of expression that is
one of the characteristics of the language. We view C's short opera-
tors and general lack of noise as a benefit. For example, the use of
braces ( ) for grouping instead of begin and end seems appropriate
in view of the frequency of the operation. The use of braces even
fits well into ordinary mathematical notation.
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Terseness can lead to code that is hard to read, however. For

example,

++*argv

where argv has been declared char =•argv (pointer into an array of

character pointers) means: select the character pointer pointed at by

argv (•argv), increment it by one (++•argv), then fetch the char-

acter that that pointer points at (•++•argv). This is concise and

efficient but reminiscent of APL.

An example of a minor problem is the comment convention,
which is PL/I'S I. ... */. Comments do not nest, so an effort to
"comment out" a section of code will fail if that section contains a
comment. And a number of us can testify that it is surprisingly
hard to recognize when an "end comment" delimiter has been
botched, so that the comment silently continues until the next com-
ment is reached, deleting a line or two of code. It would be more
convenient if a single unique character were reserved to introduce a
comment, and if comments always terminated at an end of line.

8.2.4 Semantic peculiarities

There are some occasionally surprising operator precedences. For
example,

a >> 4 + 5

shifts right by 9. Perhaps worse,

(x & MASK) 0

must be parenthesized to associate the proper way. Users learn
quickly to parenthesize such doubtful cases; and when feasible lint
warns of suspicious expressions (including both of these).

We have already mentioned the fact that the case actions in a
switch flow through unless explicitly broken. In practice, users write
so many switch statements that they become familiar with this
behavior and some even prefer it.

Some problems arise from machine differences that are reflected,
perhaps unnecessarily, into the semantics of C. For example, the
PDP-11 does sign extension on byte fetches, so that a character
(viewed arithmetically) can have a value ranging from -128 to
+127, rather than 0 to +255. Although the reference manual
makes it quite clear that the precise range of a char variable is
machine dependent, programmers occasionally succumb to the
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temptation of using the full range that their local machine can
represent, forgetting that their programs may not work on another
machine. The fundamental problem, of course, is that C permits
small numbers, as well as genuine characters, to be stored in char
variables. This might not be necessary if, for example, the notion
of subranges (mentioned above) were introduced into the language.

8.2.5 Miscellaneous

C was developed and is generally used in a highly responsive
interactive environment, and accordingly the compiler provides few
of the services usually associated with batch compilers. For exam-
ple, it prepares no listing of the source program, no cross reference
table, and no indication of the nature of the generated code. Such
facilities are available, but they are separate programs, not parts of
the compiler. Programmers used to batch environments may find it
hard to live without giant listings ; we would find it hard to use
them.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

C has continued to develop in recent years, mostly by upwardly
compatible extensions, occasionally by restrictions against manifestly
nonportable or illegal programs that happened to be compiled into
something useful. The most recent major changes were motivated
by the extension of C to other machines, and the resulting emphasis
on portability. The advent of union and of casts reflects a desire to
be more precise about types when moving to other machines is in
prospect. These changes have had relatively little effect on program-
mers who remained entirely on the UNIX system. Of more impor-
tance was a new library, which changed the use of a "portable"
library from an option into an effective standard, while simultane-
ously increasing the efficiency of the library so that users would not
object.

It is more difficult, of course, to speculate about the future. C is
now encountering more and more foreign environments, and this is
producing many demands for C to adapt itself to the hardware, and
particularly to the operating systems, of other machines. Bit fields,
for example, are a response to a request to describe externally
imposed data layouts. Similarly, the procedures for external storage
allocation and referencing have been made tighter to conform to
requirements on other systems. Portability of the basic language
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seems well handled, but interactions with operating systems grow
ever more complex. These lead to requests for more sophisticated
data descriptions and initializations, and even for assembler win-
dows. Further changes of this sort are likely.

What is not likely is a fundamental change in the level of the
language. Realistically, the very acceptance of C has compelled
changes to be made only most cautiously and compatibly. Should
the pressure for improvements become too strong for the language
to accommodate, C would probably have to be left as is, and a
totally new language developed. We leave it to the reader to specu-
late on whether it should be called D or P.
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Computer programs are portable to the extent that they can be moved
to new computing environments with much less effort than it would take
to rewrite them. In the limit, a program is perfectly portable if it can be
moved at will with no change whatsoever. Recent C language extensions
have made it easier to write portable programs. Some tools have also
been developed that aid in the detection of nonportable constructions.
With these tools many programs have been moved from the PDP-11 on
which they were developed to other machines. In particular, the UNIX*
operating system and most of its software have been transported to the
Interdata 8/32. The source-language representation of most of the code
involved is identical in all environments.

1. INTRODUCTION

A program is portable to the extent that it can be easily moved to
a new computing environment with much less effort than would be
required to write it afresh. It may not be immediately obvious that
lack of portability is, or needs to be, a problem. Of course, practi-
cally no assembly-language programs are portable. The fact is, how-
ever, that most programs, even in high-level languages, depend
explicitly or implicitly on assumptions about such machine-

* UNIX is a trademark of Bell Laboratories.
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dependent features as word and character sizes, character set, file
system structure and organization, peripheral device handling, and
many others. Moreover, few computer languages are understood by
more than a handful of kinds of machines, and those that are (for
example, Fortran and Cobol) tend to be rather limited in their
scope, and, despite strong standards efforts, still differ considerably
from one machine to another.

The economic advantages of portability are very great. In many
segments of the computer industry, the dominant cost is develop-
ment and maintenance of software. Any large organization, cer-
tainly including the Bell System, will have a variety of computers
and will want to run the same program at many locations. If the
program must be rewritten for each machine and maintained for
each, software costs must increase. Moreover, the most effective
hardware for a given job is not constant as time passes. If a non-
portable program remains tied to obsolete hardware to avoid the
expense of moving it, the costs are equally real even if less obvious.
Finally, there can be considerable benefit in using machines from
several manufacturers simply to avoid being utterly dependent on a
single supplier.

Most large computer systems spend most of their time executing
application programs; circuit design and analysis, network routing,
simulation, data base applications, and text processing are particu-
larly important at Bell Laboratories. For years, application programs
have been written in high-level languages, but the programs that
provide the basic software environment of computers (for example,
operating systems, compilers, text editors, etc.) are still usually
coded in assembly language. When the costs of hardware were large
relative to the costs of software, there was perhaps some justification
for this approach; perhaps an equally important reason was the lack
of appropriate, adequately supported languages. Today hardware is
relatively cheap, software is expensive, and any number of
languages are capable of expressing well the algorithms required for
basic system software. It is a mystery why the vast majority of com-
puter manufacturers continue to generate so much assembly-
language software.

The benefits of writing software in a well-designed language far
exceed the costs. Aside from potential portability, these benefits
include much smaller development and maintenance costs. It is true
that a penalty must be paid for using a high-level language, particu-
larly in memory space occupied. The cost in time can usually be
controlled: experience shows that the time-critical part of most
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programs is only a few percent of the total code. Careful design
allows this part to be efficient, while the remainder of the program is
unimportant.

Thus, we take the position that essentially all programs should be
written in a language well above the level of machine instructions.
While many of the arguments for this position are independent of
portability, portability is itself a very important goal; we will try to
show how it can be achieved almost as a by-product of the use of a
suitable language.

We have recently moved the UNIX system kernel, together with
much of its software, from its original host machine (DEC PDP-11) to
a very different machine (Interdata 8/32). Almost all the programs
involved are written in the C language,1' 2 and almost all are identi-
cal on the two systems. This paper discusses some of the problems
encountered, and how they were solved by changing the language
itself and by developing tools to detect and resolve nonportable con-
structions. The major lessons we have learned, and that we hope to
teach, are that portable programs are good programs for more rea-
sons than that they are portable, and that making programs portable
costs some intellectual effort but need not degrade their perfor-
mance.

II. HISTORY

The Computing Science Research Center at Bell Laboratories has
been interested in the problems and technologies of program porta-
bility for over a decade. Altran3 is a substantial (25,000 lines) com-
puter algebra system, written in Fortran, which was developed with
portability as one of its primary goals. Altran has been moved to
many incompatible computer systems; the effort involved for each
move is quite moderate. Out of the Altran effort grew a tool, the
PFORT verifier,4 that checks Fortran programs for adherence to a
strict set of programming conventions. Most importantly, it detects
(where possible) whether the program conforms to the ANSI stan-
dard for Fortran, 5 but because many compilers fail to accept even
standard-conforming programs, it also remarks upon several con-
structions that are legal but nevertheless nonportable. Successful
passage of a program through PFORT is an important step in assuring
that it is portable. More recently, members of the Computer Sci-
ence Research Center and the Computing Technology Center jointly
created the PORT library of mathematical software.6 Implementation
of PORT required research not merely into the language issues, but

C PROGRAM PORTABILITY 2023



also into deeper questions of the model of floating point computa-
tions on the various target machines.

In parallel with this work, the development at Bell Laboratories of
Snobol47 marks one of the first attempts at making a significant
compiler portable. Snobol4 was successfully moved to a large
number of machines, and, while the implementation was sometimes
inefficient, the techniques made the language widely available and
stimulated additional work leading to more efficient implementa-
tions.

III. PORTABILITY OF C PROGRAMS - INITIAL EXPERIENCES

C was developed for the PDP-11 on the UNIX system in 1972. Por-
tability was not an explicit goal in its design, even though limitations
in the underlying machine model assumed by the predecessors of C
made us well aware that not all machines were the same.2 Less than
a year later, C was also running on the Honeywell 6000 system at
Murray Hill. Shortly thereafter, it was made available on the IBM
370 series machines as well. The compiler for the Honeywell was a
new product,8 but the IBM compiler was adapted from the PDP-11
version, as were compilers for several other machines.

As soon as C compilers were available on other machines, a
number of programs, some of them quite substantial, were moved
from UNIX to the new environments. In general, we were quite
pleased with the ease with which programs could be transferred
between machines. Still, a number of problem areas were evident.
To begin with, the C language was growing and developing as
experience suggested new and desirable features. It proved to be
quite painful to keep the various C compilers compatible; the
Honeywell version was entirely distinct from the PDP-11 version,
and the IBM version had been adapted, with many changes, from a
by-then obsolete version of the PDP-11 compiler. Most seriously,
the operating system interface caused far more trouble for portability
than the actual hardware or language differences themselves. Many
of the UNIX primitives were impossible to imitate on other operating
systems; moreover, some conventions on these other operating sys-
tems (for example, strange file formats and record-oriented 1/O)
were difficult to deal with while retaining compatibility with UNIX.
Conversely, the I/O library commonly used sometimes made UNIX
conventions excessively visible-for example, the number 518 often
found its way into user programs as the size, in bytes, of a particu-
larly efficient I/O buffer structure.
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Additional problems in the compilers arose from the decision to
use the local assemblers, loaders, and library editors on the host
operating systems. Surprisingly often, they were unable to handle
the code most naturally produced by the C compilers. For example,
the semantics of possibly initialized external variables in C was quite
consciously designed to be implementable in a way identical to
Fortran's COMMON blocks to guarantee its portability. It was an
unpleasant surprise to discover that the Honeywell assembler would
allow at most 61 such blocks (and hence external variables) and that
the IBM link-editor preferred to start external variables on even
4096-byte boundaries. Software limitations in the target systems
complicated the compilers and, in one case, the problems with
external variables just mentioned, forced changes in the C language
itself.

IV. THE UNIX PORTABILITY PROJECT

The realization that the operating systems of the target machines
were as great an obstacle to portability as their hardware architecture
led us to a seemingly radical suggestion: to evade that part of the
problem altogether by moving the operating system itself.

Transportation of an operating system and its software between
non-trivially different machines is rare, but not unprecedented.9-13
Our own situation was a bit different in that we already had a
moderately large, complete, and mature system in wide use at many
installations. We could not (or at any rate did not want to) start
afresh and redesign the language, the operating system interfaces,
and the software. It seemed, though, that despite some problems in
each we had a good base to build on.

Our project had three major goals:

(i) To write a compiler for C that could be changed without grave
difficulty to generate code for a variety of machines.

(ii) To refine and extend the C language to make most C pro-
grams portable to a wide variety of machines, mechanically
identifying non-portable constructions where possible.

(iii) To revise or recode a substantial portion of UNIX in portable
C, detecting and isolating machine dependencies, and demon-
strate its portability by moving it to another machine.

By pursuing each goal, we hoped to attain a corresponding benefit:

(i) A C compiler adaptable to other machines (independently of
UNIX), that puts into practice some recent developments in
the theory of code generation.
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(ii) Improved understanding of the proper design of languages
that, like C, operate on a level close to that of real machines
but that can be made largely machine-independent.

(iii) A relatively complete and usable implementation of UNIX on
at least one other machine, with the hope that subsequent
implementations would be fairly straightforward.

We selected the Interdata 8/32 computer to serve as the initial
target for the system portability research. It is a 32-bit computer
whose design resembles that of the IBM System/360 and /370 series
machines, although its addressing structure is rather different; in
particular, it is possible to address any byte in virtual memory
without use of a base register. For the portability research, of
course, its major feature is that it is not a PDP-11. In the longer
term, we expect to find it especially useful for solving problems,
often drawn from numerical analysis, that cannot be handled on the
PDP-11 because of its limited address space.

Two portability projects besides those referred to above are partic-
ularly interesting. In the period 1976-1977, T. L. Lyon and his asso-
ciates at Princeton adapted the UNIX kernel to run in a virtual-
machine partition under vM/370 on an IBM System/370.14 Enough
software was also moved to demonstrate the feasibility of the effort,
though no attempt was made to produce a complete, working sys-
tem. In the midst of our own work on the Interdata 8/32, we
learned that a UNIX portability project, for the similar Interdata 7/32,
was under way at the University of Wollongong in Australia.15 Since
everything we know of this effort was discovered in discussion with
its major participant, Richard Miller,16 we will remark only that the
transportation route chosen was markedly different from ours. In
particular, an Interdata C compiler was adapted from the PDP-11
compiler, and was moved as soon as possible to the Interdata, where
it ran under the manufacturer's operating system. Then the UNIX
kernel was moved in pieces, first running with dummy device
drivers as a task under the Interdata system, and only at the later
stages independently. This approach, the success of which must be
scored as a real tour de force, was made necessary by the 100 kilome-
ters separating the PDP-11 in Sydney from the Interdata in Wol-
longong.

4.1 Project chronology

Work began in the early months of 1977 on the compiler, assem-
bler, and loader for the Interdata machine. Soon after its delivery at
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the end of April 1977, we were ready to check out the compiler. At
about the same time, the operating system was being scrutinized for
nonportable constructions. During May, the Interdata-specific code
in the kernel was written, and by June, it was working well enough
to begin moving large amounts of software; T. L. Lyon aided us
greatly by tackling the bulk of this work. By August, the system was
unmistakably UNIX, and it was clear that, as a research project, the
portability effort had succeeded, although there were still programs
to be moved and bugs to be stamped out. From late summer until
October 1977, work proceeded more slowly, owing to a combination
of hardware difficulties and other claims on our time; by the spring
of 1978 the portability work as such was complete. The remainder
of this paper discusses how success was achieved.

V. SOME NON-GOALS

It was and is clear that the portability achievable cannot approach
that of Altran, for example, which can be brought up with a fort-
night of effort by someone skilled in local conditions but ignorant of
Altran itself. In principle, all one needs to implement Altran is a
computer with a standard Fortran compiler and a copy of the Altran
system tape; to get it running involves only defining of some con-
stants characterizing the machine and writing a few primitive opera-
tions in assembly language.

In view of the intrinsic difficulties of our own project, we did not
feel constrained to insist that the system be so easily portable. For
example, the C compiler is not bootstrapped by means of a simple
interpreter for an intermediate language; instead, an acceptably
efficient code generator must be written. The compiler is indeed
designed carefully so as to make changes easy, but for each new
machine it inevitably demands considerable skill even to decide on
data representations and run-time conventions, let alone the code
sequences to be produced. Likewise, in the operating system, there
are many difficult and inevitably machine-dependent issues, includ-
ing especially the treatment of interrupts and faults, memory
management, and device handling. Thus, although we took some
care to isolate the machine-dependent portions of the operating sys-
tem into a set of primitive routines, implementation of these primi-
tives involves deep knowledge of the most recondite aspects of the
target machine.

Moreover, we could not attempt to make the portable UNIX sys-
tem compatible with software, file formats, or inadequate character
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sets already existing on the machine to which it is moved; to prom-
ise to do so would impossibly complicate the project and, in fact,
might destroy the usefulness of the result. If UNIX is to be installed
on a machine , its way of doing business must be accepted as the
right way; afterwards , perhaps, other software can be made to work.

VI. THE PORTABLE C COMPILER

The original C compiler for the PDP-11 was not designed to be
easy to adapt for other machines. Although successful compilers for
the IBM System /370 and other machines were based on it, much of
the modification effort in each case, particularly in the early stages,
was concerned with ridding it of assumptions about the PDP-11.
Even before the idea of moving UNIX occurred to us, it was clear
that C was successful enough to warrant production of compilers for
an increasing variety of machines. Therefore , one of the authors
(SCJ) undertook to produce a new compiler intended from the start
to be easily modified . This new compiler is now in use on the IBM
System/370 under both Os and TSS, the Honeywell 6000 , the Inter-
data 8 /32, the sEL86, the Data General Nova and Eclipse , the DEC
VAX-11/780, and a Bell System processor . Versions are in progress
for the Intel 8086 microprocessor and other machines.

The degree of portability achieved by this compiler is satisfying.
In the Interdata 8/32 version, there are roughly 8,000 lines of
source code . The first pass, which does syntax and lexical analysis
and symbol table management, builds expression trees, and gen-
erates a bit of machine-dependent code such as subroutine prologues
and epilogues , consists of 4,600 lines of code, of which 600 are
machine-dependent . In the second pass , which does the bulk of the
code generation , 1,000 out of 3,400 lines are machine-dependent.
Thus, out of a total of 8,000 lines, 1,600 , or 20 percent, are
machine-dependent ; the remaining 80 percent are shared with the
Honeywell , IBM, and other compilers . As the Interdata compiler
becomes more carefully tuned, the machine - dependent figures will
rise somewhat ; for the IBM, the machine-dependent fraction is 22
percent; for the Honeywell , 25 percent.

These figures both overstate and understate the true difficulty of
moving the compiler . They represent the size of those source files
that contain machine-dependent code; only a half or a third of the
lines in many machine-dependent functions actually differ from
machine to machine, because most of the routines involved remain
similar in structure . As an example , routines to output branches,
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align location counters, and produce function prologues and epilo-
gues have a clear machine-dependent component, but nevertheless
are logically very similar for all the compilers. On the other hand,
as we discuss below, the hardest part of moving the compiler is not
reflected in the number of lines changed, but is instead concerned
with understanding the code generation issues, the C language, and
the target machine well enough to make the modifications
effectively.

The new compiler is not only easily adapted to a new machine, it
has other virtues as well. Chief among these is that all versions
share so much code that maintenance of all versions simultaneously
involves much less work than would maintaining each individually.
For example, if a bug is discovered in the machine-independent por-
tion, the repair can be made to all versions almost mechanically.
Even if the language itself is changed, it is often the case that most
of the job of installing the change is machine-independent and
usable for all versions. This has allowed the compilers for all
machines to remain compatible with a minimum of effort.

The interface between the two passes of the portable C compiler
consists of an intermediate file containing mostly representations of
expression trees together with character representations of stereo-
typed code for subroutine prologues and epilogues. Thus a different
first pass can be substituted provided it conforms to the interface
specifications. This possibility allowed S. I. Feldman to write a first
pass that accepts the Fortran 77 language instead of C. At the
moment, the Fortran front-end has two versions (which differ by
about as much as do the corresponding first passes for C) that feed
the code generators for the PDP-11 and the Interdata machines.
Thus we apparently have not only the first, but the first two imple-
mentations of Fortran 77.

6.1 Design of the portable compiler

Most machine-dependent portions of a C compiler fall into three
categories.

(i) Storage allocation.
(ii) Rather stereotyped code sequences for subroutine entry points

and exits, switches, labels, and the like.
(iii) Code generation for expressions.

For the most part, storage allocation issues are easily parameter-
ized in terms of the number of bits required for objects of the
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various types and their alignment requirements. Some issues, like
addressability on the IBM 360 and 370 series, cause annoyance, but
generally there are few problems in this area.

The calling sequence is very important to the efficiency of the
result and takes considerable knowledge and imagination to design
properly. However, once designed, the calling sequence code and
the related issue of stack frame layout are easy to cope with in the
compiler.

Generating optimal code for arithmetic expressions, even on
idealized machines, can be shown theoretically to be a nearly intract-
able problem. For the machines we are given in real life, the prob-
lem is even harder. Thus, all compilers have to compromise a bit
with optimality and engage in heuristic algorithms to some extent, in
order to get acceptably efficient code generated in a reasonable
amount of time.

The design of the code generator was influenced by a number of
goals, which in turn were influenced by recent theoretical work in
code generation. It was recognized that there was a premium in
being able to get the compiler up and working quickly; it was also
felt, however, that this was in many ways less important than being
able to evolve and tune the compiler into a high-quality product as
time went on. Particularly with operating system code, a "quick and
dirty" implementation is simply unacceptable. It was also recog-
nized that the compiler was likely to be applied to machines not well
understood by the compiler writer that might have inadequate or
nonexistent debugging facilities. Therefore, one goal of the com-
piler was to permit it to be largely self-checking. Rather than pro-
duce incorrect code, we felt it far preferable for the compiler to
detect its own inadequacies and reject the input program.

This goal was largely met. The compiler for the Interdata 8/32
was working within a couple of weeks after the machine arrived;
subsequently, several months went by with very little time lost due
to compiler bugs. The bug level has remained low, even as the
compiler has begun to be more carefully tuned; many of the bugs
have resulted from human error (e.g., misreading the machine
manual) rather than actual compiler failure.

Several techniques contribute considerably to the general reliabil-
ity of the compiler. First, a conscious attempt was made to separate
information about the machine (e.g., facts such as "there is an add
instruction that adds a constant to a register and sets the condition
code") from the strategy, often heuristic, that makes use of these
facts (e.g., if an addition is to be done, first compute the left-hand
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operand into a register). Thus, as the compiler evolves, more effort
can be put into improving the heuristics and the recognition of
important special cases, while the underlying knowledge about the
machine operations need not be altered. This approach also
improves portability, since the heuristic programs often remain
largely unchanged among similar machines, while only the detailed
knowledge about the format of the instructions (encoded in a table)
changes.

During compilation of expressions, a model of the state of the
compilation process, including the tree representing the expression
being compiled and the status of the machine registers, is main-
tained by the compiler. As instructions are emitted, the expression
tree is simplified. For example, the expression a = b+c might first
be transformed into a = register+b as a load instruction for a is
generated, then into a = register when an add is produced. The
possible transformations constitute the "facts" about the machine;
the order in which they are applied correspond to the heuristics.
When the input expression has been completely transformed into
nothing, the expression is compiled. Thus, a good portion of the
initial design of a new version of the compiler is concerned with
making the model within the compiler agree with the actual machine
by building a table of machine operations and their effects on the
model. When this is done correctly, one has a great deal of
confidence that the compiler will produce correct code, if it produces
any at all.

Another useful technique is to partition the code generation job
into pieces that interact only through well-defined paths. One
module worries about breaking up large expressions into manageable
pieces, and allocating temporary storage locations when needed.
Another module worries about register allocation. Finally, a third
module takes each "manageable" piece and the register allocation
information, and generates the code. The division between these
pieces is strict; if the third module discovers that an expression is
"unmanageable," or a needed register is busy, it rejects the compila-
tion. The division enforces a discipline on the compiler which,
while not really restricting its power, allows for fairly rapid debug-
ging of the compiler output.

The most serious drawback of the entire approach is the difficulty
of proving any form of "completeness" property for the compiler-
of demonstrating that the compiler will in fact successfully generate
code for all legal C programs. Thus, for example, a needed
transformation might simply be missing, so that there might be no
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way to further simplify some expression. Alternatively, some
sequence of transformations might result in a loop, so that the same
expression keeps reappearing in a chain of transformations. The
compiler detects these situations by realizing that too many passes
are being made over the expression tree, and the input is rejected.
Unfortunately, detection of these possibilities is difficult to do in
advance because of the use of heuristics in the compiler algorithms.
Currently, the best way of ensuring that the compiler is acceptably
complete is by extensive testing.

6.2 Testing the compiler

We ordered the Interdata 8/32 without any software at all, so we
first created a very crude environment that allowed stand-alone pro-
grams to be run; all interrupts, memory mapping, etc., were turned
off. The compiler, assembler, and loader ran on the PDP-11, and the
resulting executable files were transferred to the Interdata for test-
ing. Primitive routines permitted individual characters to be written
on the console. In this environment, the basic stack management of
the compiler was debugged, in some cases by single-stepping the
machine. This was a painful but short period.

After the function call mechanism was working, other short tests

established the basic sanity of simple conditionals, assignments, and

computations. At this point, the stand-alone environment could be

enriched to permit input from the console and more informative

output such as numbers and character strings, so ordinary C pro-

grams could be run. We solicited such programs, but found few

that did not depend on the file system or other operating system

features. Some of the most useful programs at this stage were sim-

ple games that pitted the computer against a human; they frequently

did a large amount of computing, often with quite complicated logic,

and yet restricted themselves to simple input and output. A number

of compiler bugs were found and fixed by running games. After

these tests, the compiler ceased to be an explicit object of testing,

and became instead a tool by which we could move and test the
operating system.

Some of the most subtle problems with compiler testing come in
the maintenance phase of the compiler, when it has been tested,
declared to work, and installed. At this stage, there may be some
interest in improving the code quality as well as fixing the occasional
bug. An important tool here is regression testing; a collection of
test programs are saved, together with the previous compiler output.
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Before a new compiler is installed, the new compiler is fed these test
programs, the new output is compared with the saved output, and
differences are noted. If no differences are seen, and a compiler bug
has been fixed or improvement made, the testing process is incom-
plete, and one or more test programs are added. If differences are
detected, they are carefully examined. The basic problem is that
frequently, in attempting to fix a bug, the most obvious repair can
give rise to other bugs, frequently breaking code that used to work.
These other bugs can go undetected for some time, and are very
painful both to the users and the compiler writer. Thus, regression
tests attempt to guard against introducing new bugs while fixing old
ones.

The portable compiler is sufficiently self-checked that many poten-
tial compiler bugs were detected before the compiler was installed by
the simple expedient of turning the compiler loose on a large
amount (tens of thousands of lines) of C source code. Many con-
structions turned up there that were undreamed of by the compiler
writer, and often mishandled by the compiler.

It is worth mentioning that this kind of testing is easily carried out
by means of the standard commands and features in the UNIX sys-
tem. In particular, C source programs are easily identified by their
names, and the UNIX shell provides features for applying command
sequences automatically to each of a list of files in turn. Moreover,
powerful utilities exist to compare two similar text files and produce
a minimal list of differences. Finally, the compiler produces assem-
bly code that is an ordinary text file readable by all of the usual utili-
ties. Taken together, these features make it very simple to invent
test drivers. For example, it takes only a half-dozen lines of input
to request a list of differences between the outputs of two versions
of the compiler applied to tens (or hundreds) of source files.
Perhaps even more important, there is little or no output when the
compilers compare exactly. On many systems, the "job control
language" required to do this would be so unpleasant as to insure
that it would not be done. Even if it were, the resulting hundreds
of pages of output could make it very difficult to see the places
where the compiler needed attention.

The design of the portable C compiler is discussed more
thoroughly in Ref. 17.

VII. LANGUAGE AND COMPILER ISSUES

We were favorably impressed, even in the early stages, by the

C PROGRAM PORTABILITY 2033



general ease with which C programs could be moved to other
machines. Some problems we did encounter were related to
weaknesses in the C language itself, so we undertook to make a few
extensions.

C had no way of accounting in a machine-independent way for the
overlaying of data. Most frequently, this need comes up in large
tables that contain some parts having variable structure. As an
invented example, a compiler's table of constants appearing in a
source program might have a flag indicating the type of each con-
stant followed by the constant's value, which is either integer or
floating. The C language as it existed allowed sufficient cheating to
express the fact that the possible integer and floating value might be
overlaid (both would not exist at once), but it could not be
expressed portably because of the inability to express the relative
sizes of integers and floating-point data in a machine-independent
way. Therefore, the union declaration was added; it permits such a
construction to be expressed in a natural and portable manner.
Declaring a union of an integer and a floating point number reserves
enough storage to hold either, and forces such alignment properties
as may be required to make this storage useful as both an integer
and a floating point number. This storage may be explicitly used as
either integer or floating point by accessing it with the appropriate
descriptor tag.

Another addition was the typedef facility, which in effect allows
the types of objects to be easily parameterized. typedef is used
quite heavily in the operating system kernel, where the types of a
number of different kinds of objects, for example, disk addresses,
file offsets, device numbers, and times of day, are specified only
once in a header file and assigned to a specific name; this name is
then used throughout. Unlike some languages, C does not permit
definition of new operations on these new types; the intent was
increased parameterization rather than true extensibility.

Although the C language did benefit from these extensions, the
portability of the average C program is improved more by restricting
the language than by extending it. Because it descended from type-
less languages, C has traditionally been rather permissive in allowing
dubious mixtures of various types; the most flagrant violations of
good practice involved the confusion of pointers and integers. Some
programs explicitly used character pointers to simulate unsigned
integers; on the PDP-11 the two have the same arithmetic properties.
Type unsigned was introduced into the language to eliminate the
need for this subterfuge.
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More often, type errors occurred unconsciously. For example, a
function whose only use of an argument is to pass it to a subfunc-
tion might allow the argument to be taken to be an integer by
default. If the top-level actual argument is a pointer, the usage is
harmless on many machines, but not type-correct and not, in gen-
eral, portable.

Violations of strict typing rules existed in many, perhaps most, of
the programs making up the entire stock of UNIX system software.
Yet these programs, representing many tens of thousands of lines of
source code, all worked correctly on the PDP-11 and in fact would
work on many other machines, because the assumptions they made
were generally, though not universally, satisfied. It was not feasible
simply to declare all the suspect constructions illegal. Instead, a
separate program was written to detect as many dubious coding prac-
tices as possible. This program, called lint, picks bits of fluff from
programs in much the same way as the PFORT verifier mentioned
above. C programs acceptable to lint are guaranteed to be free from
most common type errors; lint also checks syntax and detects some
logical errors, such as uninitialized variables, unused variables, and
unreachable code.

There are definite advantages in separating program-checking
from compilation. First, lint was easy to produce, because it is
based on the portable compiler and thus shares the machine-
independent code of the first pass with the other versions of the
compiler. More important, the compilers, large programs anyway,
are not burdened with a great deal of checking code which does not
necessarily apply to the machine for which they are running. A
good example of extra capability feasible in lint but probably not in
the compilers themselves is checking for inter-program consistency.
The C compilers all permit separate compilation of programs in
several files, followed by linking together of the results. lint
(uniquely) checks consistency of declarations of external variables,
functions, and function arguments among a set of files and libraries.

Finally, lint itself is a portable program, identical on all machines.
Although care was taken to make it easy to propagate changes in the
machine-independent parts of the compilers with a minimum of
fuss, it has proved useful for the sometimes complicated logic of lint
to be totally decoupled from the compilers. lint cannot possibly
affect their ability to produce code; if a bug in lint turns up, its out-
put can be ignored and work can continue simply by ignoring the
spurious complaints. This kind of separation of function is charac-
teristic of UNIX programs in general. The compiler's one important
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job is to generate code; it is left to other programs to print listings,
generate cross-reference tables, and enforce style rules.

Vlll. THE PORTABILITY OF THE UNIX KERNEL

The UNIX operating system kernel , or briefly the operating system,

is the permanently resident program that provides the basic software

environment for all other programs running on the machine. It

implements the "system calls" by which user's programs interact

with the file system and request other services , and arranges for

several programs to share the machine without interference. The

structure of the UNIX operating system kernel is discussed elsewhere

in this issue. 18, 19

To many people, an operating system may seem the very model
of a nonportable program , but in fact a major portion of UNIX and
other well -written operating systems consists of machine-
independent algorithms : how to create, read , write, and delete files,
how to decide who to run and who to swap , and so forth. If the
operating system is viewed as a large C program , then it is reason-
able to hope to apply the same techniques and tools to it that we
apply to move more modest programs.

The UNIX kernel can be roughly divided into three sections
according to their degree of portability.

8.1 Assembly - language primitives

At the lowest level, and least portable, is a set of basic hardware
interface routines. These are written in assembly language, and con-
sist of about 800 lines of code on the Interdata 8/32. Some of them
are callable directly from the rest of the system, and provide ser-
vices such as enabling and disabling interrupts, invoking the basic
I/O operations, changing the memory map so as to switch execution
from one process to another, and transmitting information between
a user process's address space and that of the system. Most of them
are machine-independent in specification, although not implementa-
tion. Other assembly-language routines are not called explicitly but
instead intercept interrupts, traps, and system calls and turn them
into C-style calls on the routines in the rest of the operating system.

Each time UNIX is moved to a new machine, the assembly-
language portion of the system must be rewritten. Not only is the
assembly code itself machine-specific, but the particular features
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provided for memory mapping, protection, and interrupt handling
and masking differ greatly from machine to machine. In moving
from the PDP-11 to the Interdata 8/32, a huge preponderance of the
bugs occurred in this section. One reason for this is certainly the
usual sorts of difficulties found in assembly-language programming:
we wrote loops that did not loop or looped forever, garbled critical
constants, and wrote plausible-looking but utterly incorrect address
constructions. Lack of familiarity with the machine led us to
incorrect assumptions about how the hardware worked, and to
inefficient use of available status information when things went
wrong.

Finally, the most basic routines for multi-programming, those that
pass control from one process to another, turned out (after causing
months of nagging problems) to be incorrectly specified and actually
unimplementable correctly on the Interdata, because they depended
improperly on details of the register-saving mechanism of the calling
sequence generated by the compiler. These primitives had to be
redesigned; they are of special interest not only because of the prob-
lems they caused, but because they represent the only part of the
system that had to be significantly changed, as distinct from
expressed properly, to achieve portability.

8.2 Device drivers

The second section of the kernel consists of device drivers, the
programs that provide the interrupt handling, I/O command process-
ing, and error recovery for the various peripheral devices connected
to the machine. On the Interdata 8/32 the total size of drivers for
the disk, magnetic tape, console typewriter, and remote typewriters
is about 1100 lines of code, all in C. These programs are, of course,
machine-dependent, since the devices are.

The drivers caused far fewer problems than did the assembly-
language programs. Of course, they already had working models on
the PDP-11, and we had faced the need to write new drivers several
times in the past (there are half a dozen disk drivers for various
kinds of hardware attached to the PDP-11). In adapting to the Inter-
data, the interface to the rest of the system survived unchanged,
and the drivers themselves shared their general structure, and even
much code, with their PDP-11 counterparts. The problems that
occurred seem more related to the general difficulty of dealing with
the particular devices than in expressing what had to be done.
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8.3 The remainder of the system

The third and remaining section of the kernel is the largest. It is
all written in C, and for the Interdata 8/32 contains about 7,000
lines of code. This is the operating system proper, and clearly
represents the bulk of the code. We hoped that it would be largely
portable, and as it turned out our hopes were justified. A certain
amount of work had to be done to achieve portability. Most of it
was concerned with making sure that everything was declared prop-
erly, so as to satisfy lint, and with replacing constants by parameters.
For example, macros were written to perform various unit conver-
sions previously written out explicitly: byte counts to memory seg-
mentation units and to disk blocks, etc. The important data types
used within the system were identified and specified using typedef:
disk offsets, absolute times, internal device names, and the like.
This effort was carried out by K. Thompson.

Of the 7,000 lines in this portion of the operating system, only
about 350 are different in the Interdata and PDP-11 versions; that is,
they are 95 percent identical. Most of the differences are traceable
to one of three areas.

(i) On the PDP-11, the subroutine call stack grows towards
smaller addresses, while on the Interdata it grows upwards.
This leads to different code when increasing the size of a user
stack, and especially when creating the argument list for an
inter-program transfer (exec system call) because the argu-
ments are placed on the stack.

(ii) The details of the memory management hardware on the two
machines are different, although they share the same general
scheme.

(iii) The routine that handles processor traps (memory faults, etc.)
and system calls is rather different in detail on the two
machines because the set of faults is not identical, and
because the method of argument transmission in system calls
differs as well.

We are extremely gratified by the ease with which this portion of
the system was transferred. Only a few problems showed up in the
code that was not changed; most were in the new code written
specifically for the Interdata. In other words, what we thought
would be portable did in fact move without trouble.

Not everything went perfectly smoothly, of course. Our first set
of major problems involved the mechanics of transferring test
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systems and other programs from the PDP-11 to the Interdata 8/32
and debugging the result. Better communications between the
machines would have helped considerably. For a period, installing a
new Interdata system meant creating an 800 BPI tape on the sixth-
floor PDP-11, carrying the tape to another PDP-11 on the first floor to
generate a 1600 BPI version, and finally lugging the result to the
fifth-floor Interdata. For debugging, we would have been much
aided by a hardware interface between the PDP-11 and the front
panel of the Interdata to allow remote rebooting. This class of prob-
lems is basically our own fault, in that we traded the momentary
ease of not having to write communications software or build
hardware for the continuing annoyance of carrying tapes and hands-
on debugging.

Another class of problems seems impossible to avoid, since it
stems from the basic differences in the representation of informa-
tion on the two machines. In the machines at issue, only one
difference is important: the PDP-11 addresses the two bytes in a 16-
bit word with the first byte as the least significant 8 bits, while on
the Interdata the first byte in a 16-bit half-word is the most
significant 8 bits. Since all the interfaces between the two machines
are byte-serial, the effect is best described by saying that when a
true character stream is transmitted between them, all is well; but if
integers are sent, the bytes in each half-word must be swapped.
Notice that this problem does not involve portability in the sense in
which it has been used throughout this paper; very few C programs
are sensitive to the order in which bytes are stored on the machine
on which they are running. Instead it complicates "portability" in its
root meaning wherein files are carried from one machine to the
other. Thus, for example, during the initial creation of the Interdata
system we were obliged to create, on the PDP-11, an image of a file
system disk volume that would be copied to tape and thence to the
Interdata disk, where it would serve as an actual file system for the
latter machine. It required a certain amount of cleverness to declare
the data structures appropriately and to decide which bytes to swap.

The ordering of bytes in a word on the PDP-11 is somewhat
unusual, but the problem it poses is quite representative of the
difficulties of transferring encoded information from machine to
machine. Another example is the difference in representation of
floating-point numbers between the PDP-11 and the Interdata. The
assembler for the Interdata, when it runs on the PDP-11, must
invoke a routine to convert the "natural" PDP-11 notation to the
foreign notation, but of course this conversion must not be done
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when the assembler is run on the Interdata itself. This makes the
assembler necessarily non-portable, in the sense that it must execute
different code sequences on the two machines. However, it can
have a single source representation by taking advantage of condi-
tional compilation depending on where it will run.

This kind of problem can get much worse: how are we to move
UNIX to a target machine with a 36-bit word length, whose machine
word cannot even be represented by long integers on the PDP-11?
Nevertheless, it is worth emphasizing that the problem is really
vicious only during the initial bootstrapping phase; all the software
should run properly if only it can be moved once!

IX. TRANSPORTATION OF THE SOFTWARE

Most UNIX code is in neither the operating system itself nor the
compiler, but in the many user-level utilities implementing various
commands and in subroutine libraries. The sheer bulk of the pro-
grams involved (about 50,000 lines of source) meant that the
amount of work in transportation might be considerable, but our
early experience, together with the small average size of each indivi-
dual program, convinced us that it would be manageable. This
proved to be the case.

Even before the advent of the Interdata machine, it was realized,
as mentioned above, that many programs depended to an undesir-
able degree not only on UNIX I/O conventions but on details of par-
ticularly favorable buffering strategies for the PDP-11. A package of
routines, called the "portable I/O library," was written by M. E.
Lesk20 and implemented on the Honeywell and IBM machines as
well as the PDP-11 in a generally successful effort to overcome the
deficiencies of earlier packages. This library too proved to have
some difficulties, not in portability, but in time efficiency and space
required. Therefore a new package of routines, dubbed the "stan-
dard I/O library," was prepared. Similar in spirit to the portable
library, it is somewhat smaller and much faster. Thus, part of the
effort in moving programs to the Interdata machine was devoted to
making programs use the new standard I/O library. In the simplest
cases, the effort involved was nil, since the fundamental character
I/O functions have the same names in all libraries.

Next, each program had to be examined for visible lack of porta-
bility. Of course, lint was a valuable tool here. Programs were also
scrutinized by eye to detect dubious constructions. Often these
involved constants. For example, on the 16-bit PDP-11 the
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expression

x & 0177770

masks off all but the last three bits of x, since 0177770 is an octal

constant . This is almost certainly better expressed

x&--07

(where --- is the ones-complement operator) because the latter
expression actually does yield the last three bits of x independently
of the word length of the machine. Better yet, the constant should
be a parameter with a meaningful name.

UNIX software has a number of conventional data structures, rang-
ing from objects returned or accepted by the operating system kernel
(such as status information for a named file) to the structure of the
header of an executable file. Programs often had a private copy of
the declaration for each such structure they used, and often the
declaration was nonportable. For example, an encoded file mode
might be declared int on the 16-bit PDP-11, but on the 32-bit Inter-
data machine, it should be specified as short, which is unambigu-
ously 16 bits. Therefore, another major task in making the software
portable was to collect declarations of all structures common to
several routines, to put the declarations in a standard place, and to
use the include facility of the C preprocessor to insert them in the
source program. The compiler for the PDP-11 and the cross-
compiler for the Interdata 8/32 were adjusted to search a different
standard directory to find the canned declarations appropriate to

each.
Finally, an effort was made to seek out frequently occurring

patches of code and replace them by standard subroutines, or create
new subroutines where appropriate. It turned out, for example, that
several programs had built-in subroutines to find the printable user
name corresponding to a numerical user ID. Although in each case
the subroutine as written was acceptably portable to other machines,
the function it performed was not portable in time across changes in
the format of the file describing the name-number correspondence;
encapsulating the translation function insulated the program against
possible changes in a data base.

X. THE MACHINE MODEL FOR C

One of the hardest parts of designing a language in which to write
portable programs is deciding which properties are guaranteed to
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remain invariant. Likewise, in trying to develop a portable operating
system, it is very hard to decide just what properties of the underly-
ing machine can be depended on. The design questions in each case
are many in number; moreover, the answer to each individual ques-
tion may involve tradeoffs that are difficult to evaluate in advance.
Here we try to show the nature of these tradeoffs and what sort of
compromises are required.

Designing a language in which every program is portable is actu-
ally quite simple: specify precisely the meaning of every legal pro-
gram, as well as what programs are legal. Then the portability prob-
lem does not exist: by definition, if a correct program fails on some
machine, the language has not been implemented properly. Unfor-
tunately, a language like C that is intended to be used for system
programming is not very adaptable to such a Procrustean approach,
mainly because reasonable efficiency is required. Any well-defined
language can be implemented precisely on any general-purpose com-
puter, but the implementation may not be usable in practice if it
implies use of an interpreter rather than machine instructions.
Thus, with both language and operating system design, one must
strike a balance between convenient and powerful features and the
ease of implementing them efficiently on a variety of machines. At
any point, some machine may be found on which some feature is
very expensive to provide, and a decision must be made whether to
modify the feature, and thus compromise the portability of programs
that use it, or to insist that the meaning is immutable and must be
preserved. In the latter case portability is also compromised since
the cost of using the feature may be so high that no one can afford
the programs that use it, or the people attempting to implement the
feature on the new machine give up in despair.

Thus a language definition implies a model of the machine on
which programs in the language will run. If a real machine con-
forms well to the model, then an implementation on that machine is
likely to be efficient and easily written; if not, the implementation
will be painful to provide and costly to use. Here we shall consider
the major features of the abstract C machine that have turned out to
be most relevant so far.

10.1 Integers

Probably the most frequent operations are on integers consisting
of various numbers of bits. Variables declared short are at least 16
bits in length; those declared long are at least 32 bits. Most are
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declared int, and must be at least as precise as short integers, but
may be long if accessing them as such is more efficient. It is
interesting that the word length, which is one of the machine
differences that springs first to mind, has caused rather little trouble.
A small amount of code (mostly concerned with output conversion)
assumes a twos complement representation.

10.2 Unsigned Integers

Unsigned integers corresponding to short and int must be pro-
vided. The most relevant properties of unsigned integers appear
when they are compared or serve as numerators in division and
remaindering. Unsigned arithmetic may be somewhat expensive to
implement on some machines, particularly if the number representa-
tion is sign-magnitude or ones complement. No use is made of
unsigned long integers.

10.3 Characters

A representation of characters (bytes) must be provided with at
least 8 bits per byte. It is irrelevant whether bytes are signed, as in
the PDP-11, or not, as in all other known machines. It is moderately
important that an integer of any kind be divisible evenly into bytes.
Most programs make no explicit use of this fact, but the I/O system
uses it heavily. (This tends to rule out one plausible representation
of characters on the DEC PDP-1O, which is able to access five 7-bit
characters in a 36-bit word with one bit left over. Fortunately, that
machine can access four 9-bit characters equally well.) Almost all
programs are independent of the order in which the bytes making up
an integer are stored, but see the discussion above on this issue.

A fair number of programs assume that the character set is ASCII.

Usually the dependence is relatively minor, as when a character is

tested for being a lower case letter by asking if it is between a and z

(which is not a correct test in EBCDIC). Here the test could be easily

replaced by a call to a standard macro. Other programs that use

characters to index a table would be much more difficult to render

insensitive to the character set. ASCII is, after all, a U. S. national

standard; we are inclined to make it a UNIX standard as well, while

not ruling out C compilers for other systems based on other charac-

ter sets (in fact the current IBM System/370 compiler uses EBCDIC).
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10.4 Pointers

Pointers to objects of the various basic types are used very
heavily. Frequent operations on pointers include assignment, com-
parison, addition and subtraction of an integer, and dereferencing to
yield the object to which the pointer points. It was frequently
assumed in earlier UNIX code that pointers and integers had a similar
representation (for example, that they occupied the same space).
Now this assumption is no longer made in the programs that have
been moved. Nevertheless, the representation of pointers remains
very important, particularly in regard to character pointers, which
are used freely. A word-addressed machine that lacks any natural
representation of a character pointer may suffer serious inefficiency
for some programs.

10.5 Functions and the calling sequence

UNIX programs tend to be built out of many small, frequently
called functions. It is not unusual to find a program that spends 20
percent of its time in the function prologue and epilogue sequence,
nor one in which 20 percent of the code is concerned with preparing
function argument lists. On the PDP-11/70 the calling sequence is
relatively efficient (it costs about 20 microseconds to call and return
from a function) so it is clear that a less efficient calling sequence
will be quite expensive. Any function in C may be recursive
(without special declaration) and most possess several "automatic"
variables local to each invocation. These characteristics suggest
strongly that a stack must be used to store the automatic variables,
caller's return point, and saved registers local to each function; in
turn, the attractiveness of an implementation will depend heavily on
the ease with which a stack can be maintained. Machines with too
few index or base registers may not be able to support the language
well.

Efficiency is important in designing a calling sequence; moreover,
decisions made here tend to have wide implications. For example,
some machines have a preferred direction of growth for the stack.
On the PDP-11, the stack is practically forced to grow towards
smaller addresses; on the Interdata the stack prefers (somewhat
more weakly) to grow upwards. Differences in the direction of stack
growth leads to differences in the operating system, as has already
been mentioned.
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XI. THE MACHINE MODEL OF UNIX

The definition of C suggests that some machines are more suitable
for C implementations than others; likewise, the design of the UNIX
kernel fits in well with some machine architectures and poorly with
others. Once again, the requirements are not absolute, but a serious
enough mismatch may make an implementation unattractive.
Because the system is written in C, of course, a (perhaps neces-
sarily) slow or bulky implementation of the language will lead to a
slow or bulky operating system, so the remarks in the previous sec-
tion apply. But other aspects of machine design are especially
relevant to the operating system.

11.1 Mapping and the user program

As discussed in other papers,18, 21 the system provides user pro-
grams with an address space consisting of up to three logical seg-
ments containing the program text, an extensible data region, and a
stack. Since the stack and the data are both allowed to grow at one
edge, it is desirable (especially where the virtual address space is
limited) that one grow in the negative direction, towards the other,
so as to optimize the use of the address space. A few programs still
assume that the data space grows in the positive direction (so that
an array at its end can grow contiguously), although we have tried to
minimize this usage. If the virtual address space is large, there is
little loss in allowing both the data and stack areas to grow upwards.

The PDP-11 and the Interdata provide examples of what can be
done. On the former machine, the data area begins at the end of
the program text and grows upwards, while the stack begins at the
end of the virtual address space and grows downwards; this is, hap-
pily, the natural direction of growth for the stack. On the Interdata
the data space begins after the program and grows upwards; the
stack begins at a fixed location and also grows upwards. The layout
provides for a stack of at most 128K bytes and a data area of 852K
bytes less the program size, as compared to the total data and stack
space of 64K bytes possible on the PDP-11.

It is hard to characterize precisely what is required of a memory
mapping scheme except by discussing, as we do here, the uses to
which it is put. In general, paging or segmentation schemes seem to
offer sufficient generality to make implementation simple; a single
base and limit register (or even dual registers, if it is desired to
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write-protect the program text) are marginal, because of the
difficulty of providing independently growable data and stack areas.

11.2 Mapping and the kernel

When a process is running in the UNIX kernel, a fixed region of
the kernel's address space contains data specific to that process,
including its kernel stack. Switching processes essentially involves
changing the address map so that the same fixed range of virtual
addresses refers to the data area and stack of the new process. This
implies, of course, that the kernel runs in mapped mode, so that
mapping should not be tied to operating in user mode. It also
means that if the machine has but a single set of mapping
specification registers, these registers will have to be reloaded on
each system call and certain interrupts, for example from the clock.
This causes no logical problems but may affect efficiency.

11.3 Other considerations

Many other aspects of machine design are relevant to implementa-
tion of the operating system but are probably less important,
because on most machines they are likely to cause no difficulty.
Still, it is worthwhile to attempt a list.

(i) The machine must have a clock capable of generating inter-
rupts at a rate not far from 50 or 60 Hz. The interrupts are
used to schedule internal events such as delays for mechanical
motion on typewriters. As written, the system uses clock
interrupts to maintain absolute time, so the interrupt rate
should be accurate in the long run. However, changes to con-
sult a separate time-of-day clock would be minimal.

(ii) All disk devices should be able to handle the same, relatively
small, block sizes. The current system usually reads and
writes 512-byte blocks. This number is easy to change, but if
it is made much larger, the efficacy of the system's cache
scheme will degrade seriously unless a large amount of
memory is devoted to buffers.

XII. WHAT HAS BEEN ACCOMPLISHED?

In about six months, we have been able to move the UNIX operat-
ing system and much of its software from its original host, the PDP-
11, to another, rather different machine, the Interdata 8/32. The
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standard of portability achieved is fairly high for such an ambitious
project: the operating system (outside of device drivers and assem-
bly language primitives) is about 95 percent unchanged between the
two systems; inherently machine-dependent software such as the
compiler, assembler, loader, and debugger are 75 to 80 percent
unchanged; other user-level software (amounting to about 20,000
lines so far) is identical, with few exceptions, on the two machines.

It is true that moving a program from one machine to another
does not guarantee that it can be moved to a third. There are many
issues in portability about which we worried in a theoretical way
without having to face them in fact. It would be interesting, for
example, to tackle a machine in which pointers were a different size
from integers, or in which character pointers were fundamentally
different in structure from integer pointers, or with a different char-
acter set. There are probably even issues in portability that we
failed to consider at all. Nevertheless, moving UNIX to a third new
machine, or a fourth, will be easier than it was to the second. The
operating system and the software have been carefully parameter-
ized, and this will not have to be done again. We have also learned
a great deal about the critical issues (the "hard parts").

There are deeper limitations to the generality of what we have
done. Consider the use of memory mapping: if the hardware cannot
support the model assumed by the code as it is written, the code
must be changed. This may not be difficult, but it does represent a
loss of portability. Correspondingly, the system as written does not
take advantage of extra capability beyond its model, so it does not
support (for example) demand paging. Again, this would require
new code. More generally, algorithms do not always scale well; the
optimal methods of sorting files of ten, a thousand, and a million
elements do not much resemble one another. Likewise, some of
the design of the system as it exists may have to be reworked to
take full advantage of machines much more powerful (along many
possible dimensions) than those for which it was designed. This
seems to be an inherent limit to portability; it can only be handled
by making the system easy to change, rather than easily portable
unchanged. Although we believe UNIX possesses both virtues, only
the latter is the subject of this paper.
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The MERT operating system supports multiple operating system environ-

ments. Messages provide the major means of inter-process communica-

tion. Shared memory is used where tighter coupling between processes is

desired. The file system was designed with real-time response being a

major concern. The system has been implemented on the DEC PDP-11/45

and PDP-11/70 computers and supports the UNIX* time-sharing system, as

well as some real-time processes.

The system is structured in four layers. The lowest layer, the kernel,

provides basic services such as inter-process communication, process

dispatching, and trap and interrupt handling. The second layer comprises

privileged processes, such as I/O device handlers, the file manager,

memory manager, and system scheduler. At the third layer are the

supervisor processes which provide the programming environments for

application programs of the./burth layer.

To provide an environment favorable to applications with real-time

response requirements, the MERT system permits processes to control

scheduling parameters. These include scheduling priority and memory

residency. A rich set of inter-process communication mechanisms includ-

ing messages, events (software interrupts), shared memory, inter-process

traps, process ports, and files, allow applications to be implemented as

several independent, cooperating processes.

Some uses of the MERT operating system are discussed. A

. UNIX is a trademark of Bell Laboratories.
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retrospective view of the MERT system is also offered. This includes a
critical evaluation of some of the design decisions and a discussion of
design improvements which could have been made to improve overall
efficiency.

1. INTRODUCTION

As operating systems become more sophisticated and complex,
providing more and more services for the user, they become
increasingly difficult to modify and maintain. Fixing a "bug" in
some part of the system may very likely introduce another "bug" in
a seemingly unrelated section of code. Changing a data structure is
likely to have major impact on the total system. It has thus become
increasingly apparent over the past years that adhering to the princi-
ples of structured modularityl, 2 is the correct approach to building
an operating system. The objective of the MERT system has been to
extend the concept of a process into the operating system, factoring
the traditional operating system functions into a small kernel sur-
rounded by a set of independent cooperating processes. Communi-
cation between these processes is accomplished primarily through
messages. Messages define the interface between processes and
reduce the number of ways a bug can be propagated through the
system.

The MERT kernel establishes an extended instruction set via sys-
tem primitives vis-a-vis the virtual machine approach of ci 67.
Operating systems are implemented on top of the MERT kernel and
define the services available to user programs. Communication and
synchronization primitives and shared memory permit varying
degrees of cooperation between independent operating systems. An
operating system functionally equivalent to the uNIx* time-sharing
system has been implemented to exercise the MERT executive and
provide tools for developing and maintaining other operating system
environments. An immediate benefit of this approach is that operat-
ing system environments tailored to the needs of specific classes of
real-time projects can be implemented without interfering with other
systems having different objectives.

One of the basic design goals of the system was to build modular
and independent processes having data structures and tables which
are known only to the particular process. Fixing a "bug" or making
major internal changes in one process does not affect the other

* UNIX is a trademark of Bell Laboratories.
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processes with which it communicates. The work described here
builds on previous operating system designs described by Dijkstral
and Brinch Hansen.2 The primary differences between this system
and previous work lies in the rich set of inter-process communica-
tion techniques and the extension of the concept of independent
modular processes, protected from other processes in the system, to
the basic I/O and real-time processes. It can be shown that mes-
sages are not an adequate communication path for some real-time
problems.3 Controlled access to shared memory and software-
generated interrupts are often required to maintain the integrity of a
real-time system. The communication primitives were selected in
an attempt to balance the need for protection with the need for
real-time response. The primitives include event flags, message
buffers, inter-process system traps, process ports and shared seg-
ments.

One of the major influences on the design of the MERT system
came from the requirements of various application systems at Bell
Laboratories. They made use of imbedded minicomputers to pro-
vide support for development of application programs and for con-
trolling their specific application. Many of these projects had
requirements for real-time response to various external events.
Real-time can be classified into two categories. One flavor of real
time requires the collection of large amounts of data. This necessi-
tates the implementation of large and contiguous files and asynchro-
nous I/O. The second flavor of real time demands quick response
to hardware-generated interrupts. This necessitates the implementa-
tion of processes locked in memory. Yet another requirement for
some applications was the need to define a more controlled environ-
ment with better control over a program's virtual address space lay-
out than that provided in a general-purpose time-sharing environ-
ment.

This paper gives a detailed description of the system design
including the kernel and a definition and description of processes
and of segments. A detailed discussion of the communication prim-
itives follows. The structure of the file system is then discussed,
along with how the file manager and time-sharing processes make
use of the communication primitives.

A major portion of this paper deals with a critical retrospective on
the MERT system. This includes a discussion of features of the
MERT system which have been used by various projects within the
Bell System. Some trade-offs are given that have been made for
efficiency reasons, thereby sacrificing some protection. Some
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operational statistics are also included here. The pros and cons of
certain features of the MERT operating system are discussed in detail.
The portability of the operating system as well as user software is
currently a topic of great interest. The prospects of the portability of
the MERT system are described. Finally, we discuss some features of
the MERT system which could have been implemented differently for
the sake of efficiency.

II. HARDWARE REQUIREMENTS

The MERT system currently runs on the DEC PDP-11/45 and PDP-
11/70 computers.4 These computers provide an eight-level static
priority interrupt structure with priority levels numbered from 0
(lowest) to 7 (highest). Associated with the interrupt structure is
the programmed interrupt register which permits the processor to
generate interrupts at priorities of one through seven. The pro-
grammed interrupt serves as the basic mechanism for driving the
system.

The PDP-11 computer is a 16-bit word machine with a direct
address space of 32K words. The memory management unit on the
PDP-11/45 and PDP-11/70 computers provides a separate set of
address mapping and access control registers for each of the proces-
sor modes: kernel, supervisor, and user. Furthermore, each virtual
address space can provide separate maps for instruction references
(called I-space) and data references (D-space). The MERT system
makes use of all three processor modes (kernel, supervisor, and
user) and both the instruction and data address spaces provided by
these machines.

III. SYSTEM DESIGN

Processes are arranged in four levels of protection (see Fig. 1).
The lowest level of the operating system structure, called the kernel,
allocates the basic computer resources. These resources consist of
memory, segments, the CPU, and interrupts. All process dispatch-
ing, including interrupt processing, is handled by the kernel
dispatcher. The kernel is the most highly privileged system com-
ponent and therefore must be the most reliable.

The second level of software consists of kernel-mode processes
which comprise the various I/O device drivers. Each process at this
level has access to a limited number of I-space base registers in the
kernel mode, providing a firewall between it and sensitive system
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Fig. 1-System structure.

data accessible only using D-space mode. Within this level
processes are linked onto one of five priority lists. These lists
correspond to the processor priority required while the process is
executing. Three kernel processes must exist for the system to
function:

(i) The file manager is required since all processes are derived
from files.

(ii) The swap process is required to move segments between
secondary storage and main memory.

(iii) The root process is required to carry out data transfers
between the file manager and the disk.

Since the same device usually contains both the swap area and root
file system, one process usually serves for both (ii) and (iii).

At the third software level are the various operating system super-
visors which run in supervisor mode. These processes provide the
environments which the user sees and the interface to the basic ker-
nel services. All processes at this level execute at a processor prior-
ity of either one or zero. A software priority is maintained for the
supervisor by the scheduler process. Two supervisor processes are
always present: the process manager which creates all new processes*
and produces post-mortem dumps of processes which terminate
abnormally, and the time-sharing supervisor.

* The time-sharing supervisor can create a new process consisting of an exact copy of
itself.
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At the fourth level are the various user procedures which execute
in user mode under control of the supervisory environments. The
primitives available to the user are provided by the supervisory
environments which process the user system calls. Actually, the
user procedure is merely an extension of the supervisor process.
This is the highest level of protection provided by the computer
hardware.

IV. DEFINITIONS

4.1 Segments

A logical segment is a piece of contiguous memory, 32 to 32K
16-bit words long, which can grow in increments of 32 words. Asso-
ciated with each segment are an internal segment identifier (ID) and
an optional global name. The segment identifier is allocated to the
segment when it is created and is used for all references to the seg-
ment. The global name uniquely defines the initial contents of the
segment. A segment is created on demand and disappears when all
processes which are linked to it are removed. The contents of a seg-
ment may be initialized by copying all or part of a file into the seg-
ment. Access to the segment can be controlled by the creator
(parent) as follows:

(i) The segment can be private - that is, available only to the
creator.

(ii) The segment can be shared by the creator and some or all of
its descendants (children). This is accomplished by passing
the segment ID to a child.

(iii) The segment can be given a name which is available to all
processes in the system. The name is a unique 32-bit number
which corresponds to the actual location on secondary storage
of the initial segment data. Processes without a parent-child
relationship can request the name from the file system and
then attempt to create a segment with that name. If the seg-
ment exists, the segment ID is returned and the segment user
count is incremented. Otherwise, the segment is created and
the process initializes it.

4.2 Processes

A process consists of a collection of related logical segments exe-
cuted by the processor. Processes are divided into two classes,
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Fig. 2-Virtual address space of a typical kernel process.

kernel processes and supervisor processes, according to the mode of
the processor while executing the segments of the process.

4.2.1 Kernel processes

Kernel processes are driven by software and hardware interrupts,
execute at processor hardware priority 2 to 7, are locked in memory,
and are capable of executing all privileged instructions. Kernel
processes are used to control peripheral devices and handle func-
tions with stringent real-time response requirements.

The virtual address space of each kernel process begins with a
short header which defines the virtual address space and various
entry points (see Fig. 2). Up to 12K words (base registers 3 - 5) of
instruction space and 12K words of data space are available. All
kernel processes share a common stack and can read and write the
I/O device registers.

To reduce duplication of common subprograms used by indepen-
dent kernel processes and to provide common data areas between
independent cooperating kernel and supervisor processes, three
mechanisms for sharing segments are available.

The first type of shared segment, called the system library, is
available to all kernel processes. The routines included in this
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library are determined by the system administrator at system genera-
tion time. The system library begins at virtual address 140000(8)
(base register 6) and is present whether or not it is used by any ker-
nel processes.

The second type of shared segment, called a public library, is
assigned to base register 4 or 5 of the process instruction space.
References to routines in the library are satisfied when the process is
formed, but the body of the segment is loaded into memory only
when the first process which accesses it is loaded.

A third sharing mechanism allows a parent to pass the ID of a seg-
ment that is included in the address space of a kernel process when
it is created. This form of sharing is useful when a hierarchy of
cooperating processes is invoked to accomplish a task.

4.2.2 Supervisor processes

All processes which execute in supervisor mode and user mode
are called supervisor processes. These processes run at processor
priority 0 or 1 and are scheduled by the kernel scheduler process.
The segments of a supervisor may be kept in memory, providing
response on the order of several milliseconds, or supervisor seg-
ments may be swappable, providing a response time of hundreds of
milliseconds.

The virtual address space of a supervisor process consists of 32K
words of instruction space and 32K words of data space in both
supervisor and user modes (see Fig. 3). Of these 128K, at least part
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of each of three base registers (a total of 12K) must be used for
access to:

(i) The process control block (PCB), a segment typically 160
words long, which describes the entire virtual address space of
the process to the kernel and provides space to save the state
of the process during a context switch. The PCB also includes
a list of capabilities which define the range of abilities of the
process.

(ii) The process supervisor stack and data segment.
(iii) The read-only code segment of the supervisor.

The rest of the virtual address space is controlled by the supervisor.
The primitives available to supervisor processes include the ability to
control the virtual address space (both supervisor and user) which
can be accessed by the process.

4.3 Capabilities

Associated with each supervisor process is a list of keys, each of
which allows access to one object. The capability key must be
passed as an argument in all service requests on objects. Each key is
a concatenation of the process ID of the creator of the object and a
bit pattern, defined by the creator, which describes allowed opera-
tions on the object. The capability list (C-list) for each supervisor
process resides in the PCB and is maintained by the kernel through

add and delete capability messages to the memory manager. A
special variation of the send message primitive copies the capability
from the PCB into the body of a message, preventing corruption of
the capability mechanism.

Capabilities are used by the file manager to control access to files.
The capability for a file is granted upon opening the file. A read or
write request is validated by decoding the capability into a 14-bit
object descriptor (file descriptor) and a 2-bit permission field. The
capability is removed from the process C-list when the file is closed.

V. THE KERNEL

The concept of an operating system nucleus or kernel has been
used in several systems. Each system has included a different set of
logical functions.5, 6 The MERT kernel is to be distinguished from a
security kernel. A security kernel provides the basis of a secure

operating system environment.

MERT OPERATING SYSTEM 2057



The basic kernel provides a set of services available to all
processes, kernel and supervisor, and maintains the system process
tables and segment tables. Included as part of the kernel are two
special system processes, the memory manager and the scheduler.
These are distinguished from other kernel processes in that they are
bound into the basic kernel address space and do not require the
set-up of a base register when control is turned over to one of these
processes.

5.1 Kernel modules

The kernel consists of a process dispatcher, a trap handler, and
routines (procedures) which implement the system primitives.
Approximately 4K words of code are dedicated to these modules.

The process dispatcher is responsible for saving the current state
and setting up and dispatching to all kernel processes. It can be
invoked by an interrupt from the programmed interrupt register, an
interrupt from an external device, or an inter-process system trap
from a supervisor process (an emt trap).

The trap handler fields all traps and faults and, in most cases,
transfers control to a trap handling routine in the process which
caused the trap or fault.

The kernel primitives can be grouped into eight logical categories.
These categories can be subdivided into those which are available to
all processes and others which are available only to supervisor
processes. The primitives which are available to all processes are:

(i) Interprocess communication and synchronization primitives.
These include sending and receiving messages and events,
waking up processes which are sleeping on a bit pattern, and
setting the sleep pattern.

(ii) Attaching to and detaching from interrupts.
(iii) Setting a timer to cause a time-out event.
(iv) Manipulation of segments for the purposes of input/output.

This includes locking and unlocking segments and marking
segments altered.

(v) Setting and getting the time of day.

The primitives available only to supervisor processes are:

(vi) Primitives which alter the attributes of the segments of a pro-
cess. These primitives include creating new segments,
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returning segments to the system, adding and deleting seg-
ments from the process address space, and altering the access
permissions.

(vii) Altering scheduler-related parameters by roadblocking, chang-
ing the scheduling priority, or making the segments of the
process nonswap or swappable.

(viii) Miscellaneous services such as reading the console switches.

5.2 Kernel system processes

Closely associated with the kernel are the memory management
and scheduler processes. These two processes are special in that
they reside in the kernel address space permanently. In all other
respects, they follow the discipline established for kernel processes.

5.2.1 Memory manager

The memory manager is a special system process. It communi-
cates with the rest of the system via messages and is capable of han-
dling four types of requests:

(i) Setting the segments of a process into the active state, making
space by swapping or shifting other segments if necessary.

(ii) Loading and locking a segment contiguous with other locked
segments to reduce memory fragmentation.

(iii) Deactivating the segments of a process.
(iv) Adding and deleting capabilities from the capability list in a

supervisor process PCB.

5.2.2 Scheduler

The scheduler is the second special system process and is respon-
sible for scheduling all supervisor processes. The main responsibil-
ity of the scheduler is to select the next process to be executed.
The actual loading of the process is accomplished by the memory
manager.

5.3 Dispatcher mechanism

The system maintains seven process lists, one for each processor
priority at which software interrupts can be triggered using the
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programmed interrupt register. All kernel processes are linked into
one of the six lists for processor priorities 2 through 7; all supervisor
processes are linked to the processor priority 1 list. The occurrence
of a software interrupt at priorities 2 through 7 causes the process
dispatcher to search the corresponding process list and dispatch to all
processes which have one or more event flags set. The entire list is
searched for each software interrupt.

5.4 Scheduling policy

All software interrupts at processor priority 1, which are not for
the currently active process, cause the dispatcher to send a wakeup
event to the scheduler process. The scheduler uses a byte in the
system process tables to maintain the scheduling priority of each
process. This byte is manipulated by the scheduler as follows:

(i) Incremented when a process receives an event.
(ii) Increased by 10 when awakened by a kernel process.

(iii) Decremented when the process yields control due to a road-
block system call.

(iv) Lowered according to an exponential function each successive
time the process uses its entire time slice (becomes compute
bound).

The process list is searched for the highest priority process which is
ready to run, and if this process has higher priority than the current
process, the new process will preempt the current process.

To minimize thrashing and swapping, the scheduler uses a "will
receive an event soon" flag which is set by the process when it road-
blocks. This flag is typically set when a process roadblocks awaiting
completion of I/O which is expected to finish in a short time relative
to the length of the time slice. The scheduler will keep the process
in memory for the remainder of its time slice. When memory
becomes full and all processes which require loading are of
sufficiently low priority, the scheduler stops making load requests
until one of the processes being held runs out of its time slice.

VI. INTER - PROCESS COMMUNICATION

A structured system requires a well-defined set of communication
primitives to permit inter-process communication and synchroniza-
tion. The MERT system makes use of the following communication
primitives to achieve this end:
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(i) Event flags.
(ii) Message buffers.

(iii) emt traps.
(iv) Shared memory.
(v) Files.
(vi) Process ports.

Each of these is discussed in further detail here.

6.1 Event flags

Event flags are an efficient means of communication between
processes for the transfer of small quantities of data. Of the 16 pos-
sible event flags per process, eight are predefined by the system for
the following events: wakeup, timeout, message arrival, hangup,
interrupt, quit, abort, and initialization. The other eight event flags
are definable by the processes using the event flags as a means of
communication. Events are sent by means of the kernel primitive:

event (procid, event)

When control is passed to the process at its event entry point, the
event flags are in its address space.

6.2 Message buffers

The use of message buffers for inter-process communication was
introduced in the design of the RC4000 operating system.2 The SUE

project7 also used a message sending facility and the related device
called a mailbox to achieve process synchronization. We introduce
here a set of message buffer primitives which provide an efficient
means of inter-process communication and synchronization.

A kernel pool of message buffers is provided, each of which may
be up to a multiple of 7 times 16 words in size. Each message con-

sists of a six-word header and the data being sent to the receiving
process. The format of the message is specified in Fig. 4. The
primitives available to a process consist of:

alocmsg (nwords)

queuem (message)

queuemn (message)

dequeuem (process)

dqtype (process)

messink (message)
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freemsg ( message)

To open a communication channel between two processes P1 and
P2, P1 must allocate a message buffer using alocmsg, fill in the
appropriate data in the message header and data areas and then send
the message to process P2 using queuem . Efficiency is achieved by
allowing P1 to send multiple messages before waiting for an
acknowledgment (answer). The acknowledgment to these messages
is returned in the same buffer by means of the messink primitive.
The message buffer address space is freed up automatically if the
message is an acknowledgment to an acknowledgment . Buffer space
may also be freed explicitly by means of the freemsg primitive.
When no answer is expected back from a process , the queuemn
primitive is used.

Synchronization is achieved by putting the messages on P2's mes-
sage input queue using the link word in the message header and
sending P2 a message event flag . This will immediately invoke the
scheduling of process P2 if it runs at a higher priority than P1. Pro-
cess P1 is responsible for filling in the from process number, the to
process number , the type and the identifier fields in the message
header . The type field specifies which routine P2 must execute to
process the message . A type of "-1" is reserved for acknowledg-
ment messages to the original sender of the message . The status of
the processed message is returned in the status field of the message
header , a non -zero value indicating an error. The status of -1 is

LINK POINTER

FROM PROCESS NUMBER

TO PROCESS NUMBER

TYPE I I SIZE

IDENTIFIER

SEQUENCE NUMBER STATUS

MESSAGE
DATA

Fig. 4-Message format.
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reserved for use by the system to indicate that process P2 does not
exist or was terminated abnormally while processing the message.
The sequence number field is used solely for debugging purposes.
The identifier field may be planted by P1 to be used to identify and
verify acknowledgment messages. This word is not modified by the
system.

Process P2 achieves synchronization by waiting for a message. In
general, a process may receive any message type from any process
by means of the dequeuem primitive. However, P2 may request a
message type by means of dqtype in order to process messages in a
certain sequence for internal process management. In each case, the
kernel primitive will return a success/fail condition. In the case of a
fail return, P2 has the option of roadblocking to wait for a message
event or of doing further processing and looking for an input mes-
sage at a later time.

6.3 emt traps

The emulator trap (emt) instruction is used not only to imple-
ment the system primitives, but also to provide a mechanism by
which a supervisor and kernel process can pass information. The
supervisor process passes the process number of the kernel process
with which it would like to communicate to the kernel. The kernel
then dispatches to the kernel process through its emt entry point,
passing the process number of the calling supervisor process and a
pointer to an argument list. The kernel process will typically access
data in the supervisor process address space by setting part of its vir-
tual address space to overlap that of the supervisor. This method of
communication is used mainly to pass characters from a time-
sharing user to the kernel process which controls communications
equipment.

6.4 Shared memory

Supervisor processes may share memory by means of named as
well as unnamed segments. Segments may be shared on a supervi-
sor as well as a user level. In both cases, pure code is shared as
named segments. In the case of a time-sharing supervisor
(described in Section VIII), a segment is shared for I/O buffers and
file descriptors. A shared segment is also used to implement the
concept of a pipe,8 which is an inter-process channel used to com-
municate streams of data between related processes. At the user
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level, related processes may share a segment for the efficient com-
munication of a large quantity of data. For related processes, a
parent process may set up a sharable segment in its address space
and restrict the access permissions of all child processes to provide a
means of protecting shared data. Facilities are also provided for
sharing segments between unrelated supervisors and between kernel
and supervisor processes.

6.5 Files

The file system has a hierarchical structure equivalent to the UNIX
file system8 and as such has certain protection keys (see Section
VII). Most files have general read/write permissions and the con-
tents are sharable between processes.

In some cases, the access permissions of the file may themselves
serve as a means of communication. If a file is created with
read/write permissions for the owner only, another process may not
access this file. This is a means of making that file name unavail-
able to a second process.

6.6 Process ports

Knowing the identity of another process gives a process the ability
to communicate with it. The identity of certain key processes must
be known to all other processes at system startup time to enable
communication. These globally known processes include the
scheduler, the memory manager, the process manager, the file
manager, and the swap device driver process. These comprise a
sufficient set of known processes to start up new processes which
may then communicate with the original set.

Device driver processes are created dynamically in the system.
They are in fact created, loaded, and locked in memory upon open-
ing a "device" file (see Section VII). The identity of the device
driver process is returned by the process manager to the file
manager which in turn may return the identity to the process which
requested the opening of the "device" file. These processes are
referred to as "external" processes by Brinch Hansen.2

The above process-communication primitives do not satisfy the
requirements of communication between unrelated processes. For
this reason the concept of process ports has been introduced. A
process port is a globally known "device" (name) to which a process
may attach itself in order to communicate with "unknown"
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processes. A process may connect itself to a port, disconnect itself
from a port, or obtain the identity of a process connected to a
specific port. Once a process identifies itself globally by connecting
itself to a port, other processes may communicate with it by sending
messages to it through the port. The port thus serves as a two-way
communication channel. It is a means of communication for
processes which are not descendants of each other.

VII. FILE SYSTEM

The multi-environment as well as the real-time aspects of the
MERT system requires that the file system structure be capable of
handling many different types of requests. Time-sharing applica-
tions require that files be both dynamically allocatable and dynami-
cally growable. Real-time applications require that files be large, and
possibly contiguous; dynamic allocation and growth are usually not
required.

For data base management systems, files may be very large, and it
is often advantageous that files be stored in one contiguous area of
secondary storage. Such large files are efficiently described by a
file-map entry which consists of starting block number and number
of consecutive blocks (a two-word extent). A further benefit of this
allocation scheme is that file accesses require only one access to
secondary storage. Another commonly used scheme, using indexed
pointers to blocks of a file in a file-map entry, may require more
than one access to secondary storage to read or write a block of a
file. However, this latter organization is usually quite suitable for
time-sharing applications. The disadvantage of using two-word
extents in the file-map entry to describe a dynamic time-sharing file
is that this may lead to secondary storage fragmentation. In prac-
tice, the efficient management of the in-core free extents reduces
storage fragmentation significantly.

Three kinds of files are discernible to the user: ordinary disk files,
directories, and special files. The directory structure is identical to
the UNIX file system directory structure. Directories provide the
mapping between the names of files and the files themselves and
impose a hierarchical naming convention on the files. A directory
entry contains only the name of the file and a file identifier which is
essentially a pointer to the file-map entry (i-node) for that file. A
file may have more than one link to it, thus enabling the sharing of
files.

Special files in the MERT system are associated with each I/O
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device. The opening of a special file causes the file manager to send
a message to the process manager to create and load the appropriate
device driver process and lock it in memory. Subsequent reads and
writes to the file are translated into read/write messages to the
corresponding I/O driver process by the file manager process.

In the case of ordinary files, the contents of a file are whatever
the user puts in it. The file system process imposes no structure on
the contents of the file.

The MERT file system distinguishes between contiguous files and
other ordinary files. Contiguous files are described by one extent
and the file blocks are not freed until the last link to the file is
removed. Ordinary files may grow dynamically using up to 27
extents to describe their secondary storage allocation. To minimize
fragmentation of the file system, a growing file is allocated 40 blocks
at a time. Unused blocks are freed when the file is closed.

The list of free blocks of secondary storage is kept in memory as a
list of the 64 largest extents of contiguous free blocks. Blocks for
files are allocated and freed from this list using an algorithm which
minimizes file system fragmentation. When freeing blocks, the
blocks are merged into an existing entry in the free list if possible,
or placed in an unused entry in the free list. Failing these, an entry
in the free list which contains a smaller number of free blocks is
replaced.

The entries which are being freed or allocated are also added to an
update list in memory. These update entries are used to update a
bit map which resides on secondary storage. If the in-core free list
should become exhausted, the bit map is consulted to re-create the
64 largest entries of contiguous free blocks. The nature of the file
system and the techniques used to reduce file system fragmentation
ensure that this is a very rare occurrence.

Very active file systems consisting of many small time-sharing
files may be compacted periodically by a utility program to minimize
file system fragmentation still further. File system storage fragmen-
tation actually only becomes a problem when a file is unable to grow
dynamically having used up all 27 extents in its file map entry. Nor-
mal time-sharing files do not approach this condition.

Communication with the file system process is achieved entirely
by means of messages. The file manager can handle 25 different
types of messages. The file manager is a kernel process using both I
and D space. It is structured as a task manager controlling a
number of parallel cooperating tasks which operate on a common
data base and which are not individually preemptible. Each task acts
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on behalf of one incoming message and has a private data area as
well as a common data area. The parallel nature of the file manager
ensures efficient handling of the file system messages. The mode of
communication, message buffers, also guarantees that other
processes need not know the details of the structure of the file sys-
tem. Changes in the file system structure are easily implemented
without affecting other process structures.

VIII. A TIME -SHARING SUPERVISOR

The first supervisor process developed for the MERT system was a
time-sharing supervisor logically equivalent to the UNIX time-sharing
system.8 The UNIX supervisor process was implemented using mes-
sages to communicate with the file system manager. This makes the
UNIX supervisor completely independent of the file system structure.
Changes and additions can then be made to the file system process
as well as the file system structure on secondary storage without
affecting the operation of the UNIX supervisor.

The structure of the system requires that there be an independent

UNIX process for each user who "logs in." In fact, a UNIX process is

started up when a "carrier-on" transition is detected on a line which

is capable of starting up a user.

For efficiency purposes, the code of the UNIX supervisor is shared
among all processes running in the UNIX system environment. Each
supervisor has a private data segment for maintaining the process
stack and hence the state of the process. For purposes of communi-
cation, one large data segment is shared among all UNIX processes.
This data segment contains a set of shared buffers used for system
side buffering and a set of shared file descriptors which define the
files that are currently open.

The sharing of this common data segment does introduce the
problem of critical regions, i.e., regions during which common
resources are allocated and freed. The real-time nature of the sys-
tem means that a process could be preempted even while running in
a critical region. To ensure that this does not occur, it is necessary
to inhibit preemption during a critical region and then permit
preemption again upon exiting from the critical region. This also
guarantees that the delivery of an event at a higher hardware priority
will not cause a critical region to be re-entered. Note that a sema-
phore implemented at the supervisor level cannot prevent such re-
entry unless events are inhibited during the setting of the sema-
phore.
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The UNIX supervisor makes use of all the communication primi-
tives discussed previously. Messages are used to communicate with
the file system process. Events and shared memory are used to
communicate with other UNIX processes. Communication with char-
acter device driver processes is by means of emt traps. Files are
used to share information among processes. Process ports are used
in the implementation of an error logger process to collect error
messages from the various I/O device driver processes.

The entire code for the UNIX supervisor process (excluding the file
system, drivers, etc.) consists of 8K words. This includes all the
standard UNIX system routines as well as the many extra system rou-
tines which have been added to the MERT/UNIX supervisor. The
extra system routines make use of the unique features available
under MERT. These include the ability to:

(i) Create a new environment.
(ii) Send and receive messages.
(iii) Send and receive events.
(iv) Set up shared segments.
(v) Invoke new file system primitives such as allocate contiguous

files.
(vi) Set up and communicate with process ports.

(vii) Initiate physical and asynchronous I/O.

All memory management and process scheduling functions are per-
formed by the kernel.

IX. REAL-TIME ASPECTS

Several features of the MERT architecture make it a sound base on
which to build real-time operating systems. The kernel provides the
primitives needed to construct a system of cooperating, independent
processes, each of which is designed to handle one aspect of the
larger real-time problem. The processes can be arranged in levels of
decreasing privilege depending on the response requirements. Ker-
nel processes are capable of responding to interrupts within 100
microseconds, nonswap supervisor processes can respond within a
few milliseconds, and swap processes can respond in hundreds of
milliseconds. Shared segments can be used to pass data between the
levels and to insure that the most up-to-date data are always avail-
able. This is sufficient to solve the data integrity problem discussed
by Sorenson.3

The system provides a low-resolution interval timer which can be
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used to generate events at any multiple of 1/60th of a second up to
65535. This is used to stimulate processes which update data bases
at regular intervals or time I/O devices. Since the timer event is an
interrupt, supervisor processes can use it to subdivide a time slice to
do internal scheduling.

The preemptive priority scheduler and the control over which
processes are swappable allow the system designer to specify the
order in which tasks are processed. Since the file manager is an
independent process driven by messages, all processes can commun-
icate directly with it, providing a limited amount of device indepen-
dence. The ability to store a file on a contiguous area of secondary
storage is aimed at minimizing access time. Finally, the availability
of a sophisticated time-sharing system in the same machine as the
real-time operating system provides powerful tools which can be
exploited in designing the man-machine interface to the real-time
processes.

X. PROCESS DEBUGGING

One of the most useful features of the system is the ability to
carry on system development while users are logged in. New I/O
drivers have been debugged and experiments with new versions of
the time-sharing supervisor have been performed without adversely
affecting the user community.

Three aspects of the system make this possible:

(i) Processes can be loaded dynamically.
(ii) Snapshot dumps of the process can be made using the time-

sharing supervisor.
(iii) Processes are gracefully removed from the system and a core

dump produced on the occurrence of a "break point trap."

As an example, we recently interfaced a PDP-11/20 to our system
using an inter-processor DMA (direct memory access) link. During
the debugging of the software, the two machines would often get
out of phase leading to a breakdown in the communication channel.
When this occurred, a dump of the process handling the PDP-11/45
end of the link was produced, a core image of the PDP-11/20 was
transmitted to the PDP-11/45, and the two images were analyzed
using a symbolic debugger running under the time-sharing supervi-
sor. When the problem was fixed, a new version of the kernel-
mode link process was created, loaded, and tested. Turnaround
time in this mode of operation is measured in seconds or minutes.
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XI. MERT -BASED PROJECTS

A number of PDP-11-based minicomputer systems have taken
advantage of the MERT system features to meet their system
specifications. The features which various projects have found use-
ful include:

Contiguous files.
Asynchronous input/output.
Interprocess communication facilities.
Large virtual address space.
Public libraries.
Real-time processes.
Dynamic debugging features.

Most projects have had experience with or were using the UNIX
time-sharing system. Thus the path of least resistance dictated the
use of the MERT/UNIX system calls which were added to the original
UNIX system calls to take advantage of the MERT system features.
The next step was to write a special-purpose supervisor process to
give the programmer more control in an environment better suited
to the application than the UNIX time-sharing system environment.
Almost all projects used the dynamic debugging features of the
MERT system to test out new supervisor and new kernel processes.

To take advantage of all of the system calls which were added to
the MERT/UNIX supervisor, a modified command interpreter, i.e. an
extended shell, was written.9 The user of this shell is able to make
use of all of the MERT system interprocess communication facilities
without having to know the details of the arguments required. A
number of interesting new supervisor processes were written to run
on the MERT system. One of the user environments emulated was
the RSX-11 system, a DEC PDP-11 operating system. This required
the design of an interface to the MERT file manager process. The
new supervisor process provided the same interface to the user as
that seen by the RSX-11 user on a dedicated machine. This offered
the user access to all language subsystems and utilities provided by
RSX-11 itself, most notably the Fortran IV compiler. Another super-
visor process written was one which provided an interface to a user
on a remote machine (sEL86) to the MERT file system. Here the
supervisor process communicates with the MERT file manager pro-
cess by means of messages much as the MERT/UNIX supervisor does.
A special kernel device driver process controls the hardware chan-
nels between the SEL86 and the PDP-11/45 computers. The UNIX
programming environment in the MERT system is used both for
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PDP-11 programming and for preparing files and programs to be used
on the SEL86 machine.

XII. PROTECTION/PERFORMANCE TRADE-OFFS

We summarize here the results of our experience with the MERT
system as designers, implementers, and users. Some of the features
added or subtracted from the MERT system have been the result of
feedback from various users. We pay particular attention to various
aspects of the system design concerning trade-offs made between
efficiency and protection. The advantages of the system architecture
as well as its disadvantages are discussed.

Each major design decision is discussed with respect to perfor-
mance versus protection. By protection, we mean protection against
inadvertent bugs and the resulting corruption, not protection against
security breaches. In general, for the sake of a more efficient sys-
tem, protection has been sacrificed when it was believed that this
extra protection would degrade system performance significantly. In
most cases, the system is used in dedicated applications where some
protection could be sacrificed. Maximum protection is provided
mainly by separating the various functions into layers, putting each
function at the highest possible level, according to the access
privileges required. All processes were written in the high-level
language, C.10 This forced some structure in the processes. C con-
trols access to the stack pointer and program counter and automati-
cally saves the general-purpose registers in a subroutine call. This
provides some protection which is helpful in confining the access of
a program or process.

12.1 Hardware

The hardware of the PDP-11 computers permits a distinction to be
made between kernel processes and supervisor processes. Kernel
processes have direct access to the kernel-mode address space and
may use all privileged instructions. For efficiency reasons, one base
register always points to the complete I/O page. This is 4K words of
the address space of the PDP-11 computer which is devoted to device
addresses. It is not possible to limit access to only the device regis-
ters required for a particular device driver. The virtual address
space is limited to 16-bit addressing. This presents a limitation to
some large processes.
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12.2 Kernel

The number of base registers provided by the PDP-11 segmenta-
tion unit is a restriction in the kernel. The use of I and D space
separation is necessitated to provide a reasonable number (16) of
segments. Some degree of protection is provided for the sensitive
kernel system tables by the address space separation, since the ker-
nel drivers do not use I/D space separation in general. Such kernel
processes do not have access to sensitive system data in kernel D
space.

12.3 Kernel process

Most kernel-mode processes use only kernel I space. This prohi-
bits access to system segment tables and to kernel code procedures.
However, access to message buffers, dispatcher control tables, and
the I/O page is permitted. A kernel process is the most privileged
of all processes which the user can load into a running system. The
stack used by a kernel process is the same as that used by kernel
procedures.

To provide complete security in the kernel would require that
each process use its own stack area and that access to all base regis-
ters other than those required by the process be turned off. The
time to set up a kernel process would become prohibitive. Since
control is most often given to a kernel process by means of an inter-
rupt, the interrupt overhead would become intolerable, making it
more difficult to guarantee real-time response.

In actual practice, the corruption of the kernel by kernel processes
has occurred very infrequently and then only when debugging a new
kernel process. Fatal errors were seldom caused by the modification
of data outside the process's virtual address range. Most errors were
timing-dependent errors which would not have been detected even
with better protection mechanisms. Hence we conclude that the
degree of protection provided for kernel processes in dedicated sys-
tems is sufficient without degrading system performance. The only
extra overhead for dispatching to a kernel process is that of saving
and restoring some base registers and saving the current stack
pointer.

1 2.4 Supervisor process

Supervisor processes do not have direct access to the segments of
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other processes, kernel or supervisor. Therefore, it is possible to
restrict the impact of these processes on the rest of the system by
means of careful checking in the kernel procedures. All communi-
cation with other processes must go through the kernel. Of course,
one pays a price for this protection since all supervisor base registers
must have the appropriate access permissions set when a supervisor
process is scheduled. Message traffic overhead is higher than for
kernel processes.

For protection reasons, capabilities were added to the system.
This adds extra overhead for each message to the file manager, since
each capability must be validated by the file manager. An alternate
implementation of capabilities which reduces overhead at the cost of
some protection is discussed in a later section.

1 2.5 Message buffers

System message buffers are maintained in kernel address space.
These buffers are corruptible by a kernel process. The only way to
protect against corruption completely would be to make a kernel
emt call to copy the message from the process's virtual address
space to the kernel buffer pool. For efficiency reasons, this was not
done.

For a supervisor process, the copying of a message from the
supervisor's address space to the kernel message buffer pool area is
necessary. This increases message traffic overhead for supervisor to
kernel or supervisor to supervisor transfers. The overhead for send-
ing and receiving a message between kernel processes amounts to
300 microseconds. whereas for supervisor processes the overhead is
of the order of 800 microseconds (on a PDP-11/45 computer without
cache memory).

12.6 File manager process

The file manager process is implemented as a kernel-mode process
with I and D space separated to obtain enough virtual address space.
In the early implementation stage of the MERT system, the file
manager was a supervisor process, but the heavy traffic to the file
manager process induced many context changes and contributed
significantly to system overhead. Implementation of the file
manager process as a kernel-mode process improved system
throughput by an average of about 25 percent. Again, this was a
protection/efficiency trade-off. Protection is sacrificed since the file
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manager process has access to all system code and data. In practice,
it has not proven to be difficult to limit the access of the file
manager to its intended virtual address space. Making the file
manager a separate process has made it easy to implement indepen-
dent processes which communicate with the file manager. The file
manager is the only process with knowledge of the detailed structure
of the file system. To prevent corruption of the file system, all
incoming messages must be carefully validated. This includes care-
ful checking of each capability specified in the message. This is a
source of some system overhead which would not exist if the file
system were tightly coupled with a supervisor process. However,
this separation of function has proven very helpful in implementing
new supervisors.

12.7 Process manager

The process manager is implemented as a swappable supervisor
process. Its primary function is to create and start up new processes
and handle their termination. An example is the loading of the ker-
nel driver process for the magnetic tape drive. This is an infrequent
occurrence, and thus the time penalty to bring in the process
manager is tolerable. Other more frequent creations and deletions
of processes associated with the UNIX system forking of processes is
handled by the system scheduler process. In the early stages of
implementation of the MERT system, the creation and deletion of all
processes required the intervention of the process manager. This
required the loading of the process manager in each case and added
significantly to the overhead of creating and deleting processes.

12.8 Response comparisons

The fact that a "UNIX-like" environment was implemented as one
environment under the MERT kernel gives us a unique opportunity
to compare the overall response of a system running as a general-
purpose development system to that of a system running a dedicated
UNIX time-sharing system on the same hardware. This gives us a
means of determining what system overhead is introduced by using
messages as a basic means of inter-process communication. Appli-
cation programs which take advantage of the UNIX file system struc-
ture give better response in a dedicated UNIX time-sharing system,
whereas those which take advantage of the MERT file system
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structure give a better response under the MERT System. Compute-
bound tasks respond in the same time under both systems. It is
only where there is substantial system interaction that the structure
of the MERT system introduces extra system overhead, which is not
present in a dedicated UNIX system. Comparisons of the amount of
time spent in the kernel and supervisor modes using synthetic jobs
indicate that the MERT system requires from 5 to 50 percent more
system time for the more heavily used system calls. This translates
to an increase of 5 to 10 percent in elapsed time for the completion
of a job stream consisting of compilation, assembly, and link-edit.
We believe that this overhead is a small price to pay to achieve a
well-structured operating system with the ability to support custom-
ized applications. The structure of the system provides a basis for
doing further operating system research.

XIII. DESIGN DECISIONS IN RETROSPECT

A number of design decisions were made in the MERT system
which had no major impact on efficiency or protection. However,
many of these impacted the interface presented to the user of the
system. The pros and cons of these decisions are discussed here.

13.1 File system

The first file system for the MERT system was designed for real-
time applications. For that, it is well-suited. For those applications
which require the collection of data at a high rate, the use of con-
tiguous files and asynchronous I/O proved quite adequate. How-
ever, the number of applications which required contiguous files was
not overwhelming. For those applications which used the MERT sys-
tem as a development system as well, the allocation of files by
extents is not optimal, although adequate. The number of files
which exhausted their 27 extents was small indeed. Also the need
for compaction of file systems due to fragmentation was not as great
as might have been expected and seems not to have posed any prob-
lems. The root file system very rarely needs to be compacted due to
the nature of file system activity on it.

The file manager process uses multi-tasking to increase its
throughput. This has added another degree of parallelism to the
system, but on the other hand has also been the source of many
hard-to-find timing problems.
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The use of 16-bit block numbers is a shortcoming in the file sys-
tem with the advent of larger and larger disks. However, this has
been rectified in a new 32-bit file system which has features that
make it more suitable for small time-sharing files and yet allows the
allocation of large contiguous files. Compaction of this file system is
not required.

13.2 Error logging

A special port process to collect error messages has proven to be
very useful for tracking down problems with the peripheral devices.
Sending messages rather than printing diagnostics out at the control
terminal minimizes impact on real-time response. One drawback of
this means of reporting errors is that the user is not told of the
occurrence of an error immediately at his terminal unless the error
is unrecoverable. He must examine the error logger file for actual
error indications.

13.3 Process ports

Process ports were implemented as a means of enabling communi-
cation among unrelated processes. This has proven to be an easy-
to-use mechanism for functions such as the error logger. Other uses
have been made of it, such as a centralized data base manager. The
nature of the implementation of ports requires that the port
numbers be assigned by some convention agreed upon by users of
ports. Probably a better implementation of ports would have been
to use named ports, i.e., to refer to ports by name rather than by
number. The number then is not dependent on any user-assigned
scheme.

13.4 Shared memory

Shared memory allows the access to a common piece of memory
by more than one process. The use of named segments to imple-
ment sharing enables two or more processes to pass a large amount
of data between them without actually copying any of the data. The
PDP-11 memory management unit and the 16-bit virtual address
space are limitations imposed on shared memory. Only up to 16
segments may be in a process' address space at any one time.
Sometimes it would be desirable to limit access to less than a total
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logical segment. The implementation chosen in the MERT system
does not allow this.

13.5 Public libraries

Public libraries are used in the MERT system at all levels: kernel,
supervisor, and user. The use of public libraries at the kernel level
has allowed device drivers to share a common set of routines. At
the user level, many programs have made use of public libraries to
make a substantial savings in total memory requirements. The ini-
tial implementation of public libraries required that when a public
library was reformed, all programs which referenced it had to be
link-edited again to make the appropriate connection to subroutine
entry points in the public library. The current implementation
makes use of transfer vectors at the beginning of the public library
through which subroutine transfers are performed. Thus, if no new
entry points are added when a public library is formed again, the
link-edit of all programs which use it becomes unnecessary. This
has proven to be very helpful for maintaining a set of user programs
which share public libraries. It has proven to be convenient also for
making minor changes to the system library when new subroutines
are not added. This makes the re-forming of all device drivers
unnecessary each time a minor change is made to a system library.

13.6 Real -time capabilities

The real-time capabilities of the MERT system are determined in
part by the mode of the process running, i.e., kernel or supervisor.
Control is given to a kernel mode process by an interrupt or an
event. Time-out events may be used effectively to guarantee repeti-
tive scheduling of a process. The response of a kernel process is
limited by the occurrence of high priority interrupts, and therefore
can only be guaranteed for the highest priority process. A supervi-
sor process' scheduling priority can be made high by making it a
nonswap process and giving it a high software priority. A response
of the order of a few milliseconds can then be obtained. The
scheduler uses preemption to achieve this. One aspect missing from
the scheduler is deadline scheduling. Thus, it cannot be guaranteed
that a task will finish by a certain time. The requirement for
preemption has added another degree of complexity to the scheduler
and of necessity adds overhead in dispatching to a process. Preemp-
tion has also complicated the handling of critical regions. It is
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necessary to raise the hardware priority around a critical region.
This is difficult to do in a supervisor, since it requires making a ker-
nel emt call, adding to response time. Shifting of segments in
memory also adds to the response time which can be guaranteed.

13.7 Debugging features

Overall, the debugging features provided by the MERT system
have proven to be adequate. The kernel debugger has proven useful
in looking at the history of events in the kernel and examining the
detailed state of the system both after a crash and while the system
is running. In retrospect, it would have been helpful to have some
more tools in this area to examine structures according to named
elements rather than by offsets.

The dynamic loading, dumping, and then debugging of processes,
both kernel and supervisor, on a running system have been helpful
in achieving fast debugging turnaround. While post-mortem debug-
ging is useful, interactive debugging would eliminate the need to
introduce traces and local event logging to supervisor and kernel
processes as debugging aids. One danger of planting break-point
traps at arbitrary points in the UNIX supervisor has been that of
planting them in a critical region in which a resource is allocated.
The resource may not be freed up properly and other processes may
hang waiting for the resource to be freed up.

13.8 Memory manager

The memory manager is a separate kernel process and handles
incoming requests as messages in a fairly sequential manner. One
thing it does do in parallel, however, is the loading of the next pro-
cess to be run while the current one is running. In certain cases,
the memory manager can act as a bottleneck in the system
throughput. This can also have serious impact on real-time response
in a heavily loaded system.

13.9 Scheduler

The scheduler in the MERT system is another separate kernel pro-
cess. One improvement which could be made in this area is to
separate mechanism from policy. The fact that- the scheduler and
memory manager are separate processes has system-wide impact in
that the scheduler cannot always tell which process is the best one to
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run based on which one has the most segments in memory. The
memory manager does not tend to throw out segments based on
which process owns it but rather on usage statistics.

13.10 Messages

Messages have proven to be an effective means of communication
between processes. At the lowest level, they have been helpful in
separating functions into processes and of making these processes
modular and independent. It has made things like error logging easy
to implement. Communication with the file manager process by
means of messages has removed the dependency of supervisor
processes on file system structures. In fact, a number of different
file managers have been written to run using the identical "UNIX-
like" supervisor. The UNIX file manager was brought up to run in
place of the original MERT file manager without any impact on the
supervisor processes. Messages at a higher level have not always
been easy to deal with. It is difficult to prevent a number of user
processes from swamping the kernel message buffer pool and
thereby impacting system response.

The MERT system implementation of messages solves the problem
of many processes sending to one process quite effectively. How-
ever, the reverse problem of one process sending to many processes
(i.e., many servers) is not handled efficiently at all.

13.11 Firewalls

Having separate processes for separate functions has modularized
the design of the system. It has eased the writing of new processes
but required them to obey a new set of rules. To ensure that
processes obey these rules requires an amount of checking which
would not be necessary if processes were merged in one address
space. This has been especially true of the file manager where cor-
ruption of data is very crucial, as it can very quickly spread as a
cancer in the system.

XIV. PORTABILITY

Recently a great deal of interest has been expressed in porting

complete operating systems and associated user programs to

hardware configurations other than the DEC 16-bit PDP-11 computer.
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We discuss here some of the hardware characteristics on which the
MERT system depends and the impact of these on the software.

14.1 Hardware considerations

At the time that we designed the MERT operating system (circa
1973), the DEC PDP-11/45 processor with a memory management
unit allowing the addressing of up to 124K words of memory was a
new system. Moreover, the memory management unit was rather
sophisticated for minicomputers at that time, since it supported
three address modes: kernel, supervisor, and user. It also supported
two address spaces per mode, instruction and data. This enables a
mode to address up to 64K words in its address space. Two address
modes are generally sufficient for operating systems which provide
one environment to the user. To support multi-environments, three
modes are required (or at least are desirable), one of which provides
the various environments to the user. We decided to make use of
this feature. The separation of instruction and data address space
provides more address space for a process. It also provides a greater
number of segments per user and allows some degree of protection.
This was used in the kernel where a large number of separate pieces
of code and data need to be referenced concurrently. The protection
provided is made use of in kernel processes which need very few
base registers and do not need access to very much data; in fact, the
less the better. Thus a kernel process is not allowed to run with
instruction and data space separated so as to protect sensitive system
tables.

The third unique feature of the PDP-11/45 computer is that it has
a programmable interrupt register (PIR). This enables the system to
trigger a software interrupt at one of seven hardware priority levels.
The interrupt goes off when the processor starts to run at less than
the specified priority. This is used heavily in the MERT system
scheduler process and by kernel system routines which trigger vari-
ous events to occur at specified hardware priorities. It is not
sufficient to depend on the line clock for a preemptive scheduler to
guarantee real-time response.

We have identified here three unique features of the PDP-11/45
processor (and the PDP-11/70) which have been heavily used in the
MERT system. These features are identified as unique in that a gen-
eral class of minicomputers does not have all of these features,
although some may have one or more. They are also identified as
unique in that the UNIX operating system has not made critical use
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of them. Therefore, the portability of the UNIX system is not
impacted by them. For the portability of the MERT system, three or
more address modes, a large number of segments (at least eight) per
address mode, and a programmed interrupt register are highly desir-

able.

14.2 Software considerations

Currently, most of the MERT system is written in C. This includes
all device driver processes, the scheduler, the file manager, the pro-
cess manager, and the UNIX supervisor. Most of the basic kernel,
including the memory manager process, is written in PDP-11 assem-
bly language. This portion is of course not portable to other
machines. Recently, a portable C compiler has been written for
various machines, both 16-bit and 32-bit machines, the two classes
of minicomputers which are of general interest for portability pur-
poses. These include the PDP-11 and the Interdata 8/32 machines.

The UNIX system has been ported to the Interdata 8/32 machine;
this includes all user programs as well as the operating system
itself.11 Thus, if the portability of the MERT system to the Interdata
32-bit machine were to be considered, all user programs have
already been ported. The main pieces of software which have to be
written in portable format include all device drivers, the scheduler,
the process manager, the file manager and the UNIX supervisor. Of
these, only the device drivers have machine dependencies and need
substantial rewriting. The file manager, being a kernel process, has
some machine-dependent code. The bulk of the software which
must be rewritten is in the kernel itself, being substantially written
in PDP-11 assembly language. Also, all library interface routines
must be rewritten. Many of the calling sequences for library rou-
tines have to be reworked, since arguments are passed specifically as
16-bit integers. Some sizes, especially of segments, are specified in
terms of 16-bit words. For portability reasons, all sizes must be
treated in terms of 8-bit bytes.

XV. REFLECTIONS

In designing any system, one must make a number of crucial deci-
sions and abide by them in order to come up with a complete and
workable system. We have made a number of these, some of which
have been enumerated and discussed in the above sections. Upon
reflecting on the results and getting feedback from users of the
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MERT system, we have come up with a number of design decisions
which could probably have been made differently from what was
actually done. Users have pushed the system in directions which we
never considered, finding holes in the design and also some bugs
which were never exercised in the original MERT system.

15.1 Capabilities

Capabilities were implemented in the system as a result of the
experience of one user in writing a new supervisor process which
sent messages to the file manager. There were two major
deficiencies. The first had to do with protection. Under the old
design (without capabilities), it was possible to ignore the protection
bits. Upon reading/writing a file, no check was made of the protec-
tion bits. As long as a file was open, any action could be taken on
the file, reading or writing; this included directories. With the addi-
tion of capabilities, when a file is opened, the capability is put in the
user's PCB. The capability includes the entry number in the file
manager tables, protection bits, and a usage count. The capability is
put in a message to the file manager by the kernel when a request is
made to read/write a file. These three quantities are checked by the
file manager. A capability must be satisfactorily validated before an
access can be made to a file. This provides the degree of protection
desired.

The second deficiency of the file manager had to do with the
maintenance of an up-to-date set of open file tables. If a process is
abnormally terminated, i.e., terminated by the scheduler without
being given a chance to clean up, the process may not have been
able to close all its files. This would typically occur when a break-
point trap was planted in an experimental version of the UNIX super-
visor. The fact that no table is maintained in a central place with a
list of all files open by each process caused file tables to get out of
synchronization. Capabilities provide such a central table to the pro-
cess manager and the memory manager. Thus when an abnormal
termination is triggered on a process, the memory manager can
access the process PCB and take down the capabilities one by one,
going through the capability list in the PCB, sending close messages
to the file manager. This provides a clean technique for maintaining
open counts on files in the file manager tables.

In retrospect, the implementation of capabilities in the MERT sys-
tem was probably carried to an extreme, i.e. not in keeping with the
other protection/efficiency trade-offs made. The trade-off was made
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in favor of protection rather than efficiency, in this case. The
current implementation of capabilities is expensive in that extra
messages are generated in opening and closing files. For instance, in
closing a file, a close message is sent to the file manager; this in
turn generates a message to the capability manager (i.e., the
memory manager) to take down the capability from the PCB of the
process which sent the close message. The asynchronous message
is necessary since the memory manager process must bring the PCB
into memory to take down the capability if the PCB is not already in
memory.

A more efficient means of achieving the same result would be to
maintain this list of capabilities in the supervisor address space with
general read/write permissions with a pointer to the capability list
maintained in the PCB. It would then be the supervisor's responsi-
bility to fill in the capability when sending a message to the file
manager and to take down the capability when closing the file. This
requires no extra message traffic overhead as compared to the origi-
nal implementation without capabilities. Upon abnormal termina-
tion, the memory manager could still go through the capability list
to take down all capabilities by sending close file messages to the
file manager. Protection is still achieved by the encoded capability.
Efficiency is maintained by eliminating extra messages to the
memory manager. This proposed implementation also has the added
benefit that it can be implemented for kernel processes in the same
manner, i.e., using a pointer to a capability list in the kernel process
header.

15.2 Global system buffers

In the current implementation of the MERT system, each process
maintains its own set of system buffers. The file manager provides
its own set of buffers, used entirely for file mapping functions (e.g.,
superblocks for mounted file systems, i-nodes, and directories).
The UNIX supervisor provides its own set of buffers for use by all
UNIX processes. These buffers are used almost exclusively for the
contents of files. However, it is possible for a file to be the image of
a complete file system, in which case a buffer may actually contain
the contents of a directory or i-node. This means there may be
more than one copy of a given disk block in memory simultane-
ously. Because of the orthogonal nature of the uses of buffers in
the UNIX system and the file manager, this duplication hardly ever
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occurs and does not pose a serious problem. Within the UNIX sys-
tem itself, all buffers are shared in a common data segment.

However, if one wishes to implement other supervisors and these
supervisor processes share a common file system with the UNIX
supervisor, it becomes quite possible that more than one copy of
some disk blocks exists in memory. This presents a problem for
concurrent updates.

An alternate method of implementation of buffers would have
been to make use of named segments to map buffers into a globally
accessible buffer pool. The allocation and deallocation of buffers
would then become a kernel function, and this would guarantee that
each disk block would have a unique copy in memory. If the MERT
system had allowed protection on sections of a segment, then sys-
tem buffers could have been implemented as one big buffer segment
broken up into protectable 512-byte sections. The system overhead
in this implementation probably would have been no greater than
the current implementation. Each time a buffer is allocated and
released, a kernel emt call would be necessary. However, even the
present implementation requires two short-duration emt calls to
prevent process preemption during a critical region in the UNIX
supervisor both during the allocation and releasing of a buffer.

15.3 Diagnostics

One of the shortcomings of the MERT system has been the lack of
system diagnostics printed out at the control console reporting sys-
tem troubles. The UNIX system provides diagnostic print-outs at the
control console upon detection of system inconsistencies or the
exhaustion of crucial system resources such as file table entries,
i-node table entries, or disk free blocks. Device errors are also
reported at the control console. In the MERT system, device errors
are permanently recorded on an error logger file. One reason for
not providing diagnostic print-out at the control console is that the
print-out impacts real-time response.

The lack of diagnostic messages has been particularly noticeable in
the file system manager and in the basic kernel when resources are
exhausted. Providing diagnostic messages in the system requires the
use of some address space in each process making use of diagnostic
messages; this would require duplication of the basic printing rou-
tines in the kernel, the file manager, and any other process which
wished to report diagnostics or the inclusion of the printing routines
in the system library. A possible solution would have been to make
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use of the MERT message facilities to send diagnostic data to a cen-
tral process connected to a port to print out all diagnostics both on
the control console and into a file for later analysis. Using this tech-
nique, it would also be possible to send diagnostic messages directly
to the user's terminal which caused the diagnostic condition to
occur. The diagnostic logger process would be analogous to the

error logger process.

15.4 Scheduler process

The current MERT scheduler is a separate kernel system process
which implements both the mechanism and the policy of system-
wide scheduling. It would be more flexible to implement only the
mechanism in the kernel process and let the policy be separated
from this mechanism in other user-written processes.
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The decrease in the cost of computer hardware, brought about by the
advent of the microprocessor and inexpensive solid-state memory, has
brought the personal computer system to reality. Although the cost of
software development shows no sign of decreasing soon, the fact that a
large amount of software has been developed for the UNIX* time-sharing
system in the high-level language, C, makes much of this software port-
able to another processor with rather limited hardware in comparison. A
single-user UNIX system has been developed for the DEC LSI-11 micro-
processor using 20K words of primary memory and floppy disks for sec-
ondary storage. By preserving the user-system interface of the UNIX sys-
tem, it is possible to run almost all of the standard UNIX languages and
subsystems on this single-user version of the UNIX system.

A background process as well as foreground processes may be run.
The file system is "UNIX-like, " but has provisions for dealing with con-
tiguous files. Subroutines have been written to interface to the file sys-
tem on the floppy disks. Asynchronous read/write routines are also avail-
able to the user.

The LSI-UNIX system (LSX) has appeal as a stand-alone system for

dedicated applications, as well as many potential uses as an intelligent

terminal system.

1. INTRODUCTION

The UNIX operating systems has enjoyed wide acceptance as a
powerful, general-purpose time-sharing system. It supports a large

* UNIX is a trademark of Bell Laboratories.
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variety of languages and subsystems. It runs on the Digital Equip-
ment Corporation PDP-11/40, 11/45, and 11/70 computers, all 16-
bit word machines that have a memory management unit which
makes multiprogramming easy to support. The UNIX system is writ-
ten in the system programming language, C,2 in which most user
programs and subsystems are written. Other languages and subsys-
tems supported include Basic, Fortran, Snobol, TMG, and Yacc (a
compiler-compiler). The file system is a general hierarchical struc-
ture supporting device independence.

With the advent of the DEC LSI-11 microprocessor3 it has become
desirable to transport to this machine as much as possible of the
software developed for the UNIX system. One of the biggest prob-
lems faced is the lack of a memory management unit, which limits
the total address space of both system and user to 28K words. The
challenge, then, is to reduce the 20K-word, original UNIX operating
system to 8K words and yet maintain a useful operating system.
This limits the number of device drivers as well as the system func-
tions that can be supported. The secondary storage used is floppy
disks (diskettes). The operating system was written in the C
language and provides most of the capabilities of the standard UNIX
operating system. The system occupies 8K words in the lower part
of memory, leaving up to 20K words for a user program. This
configuration permits most of the UNIX user programs to run on the
LSI-11 microcomputer. The operating system (LSX) allows a back-
ground process as well as foreground processes.

The fact that a minimum system can be configured for about
$6000 makes the LSX system an attractive stand-alone system for
dedicated applications such as control of special hardware. The sys-
tem also has appeal as an intelligent terminal and for applications
that require a secure and private data base. In fact, this is a personal
computer system with almost all the functions of the standard UNIX
time-sharing system.

This paper describes some of the objectives of the LSX system as
well as some of its more important features. Its capabilities are
compared with the powerful UNIX time-sharing system which runs
on the PDP-11/40, 11/45, and 11/70 computers,4 where appropriate.
A summary and some thoughts on future directions are also
presented.

II. WHY UNIX ON A MICROPROCESSOR?

Why develop a microprocessor-based UNIX system? The
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increasing trend to microprocessors and the proliferation of intelli-
gent terminals make it desirable to harness the UNIX software into
an inexpensive microcomputer and give the user a personal com-
puter system. A number of factors must be considered in doing
this:

(i) Cost of hardware.
(ii) Cost of software.

(iii) UNIX software base.
(iv) Size of system.

The hardware costs of a computer system have come down
dramatically over the last few years (even over the past few
months). This trend is likely to continue in the foreseeable future.
Microprocessors on a chip are a reality. The cost of primary
memory (e.g., dynamic MOs memory) is decreasing rapidly as 4-kb
chips are being replaced by 16-kb chips. A large amount of exper-
tise exists in PDP-11 hardware interfacing. The similarity of the Q-
bus of the LSI-11 microcomputer to the UNIBUS of other members of
the PDP-11 family of computers makes this expertise available.

Software development costs continue to increase, since the
development of new software is so labor-intensive, making it
difficult to estimate the cost of writing a particular software applica-
tion program. Until automatic program writing techniques become
better understood and used, this trend is not likely to be turned
around any time soon. Thus it becomes imperative to take advan-
tage of as much software that has already been written as possible,
including the tremendous amount of software that has already been
written to run under the UNIX operating system. The operating sys-
tem developed for the LSI-11 microcomputer supports most of the
UNIX user programs which run under UNIX time-sharing, even
though LSX is a single-user system. Thus most of the software for
the system is already available, minimizing the cost of software
development.

With the advent of some powerful microprocessors, the sizes of
some computer systems have shrunk correspondingly. Small secon-
dary storage units (floppy disks) are also becoming increasingly
popular. In particular, DEC is marketing the LSI-11 microcomputer,
which is a 16-bit word machine with an instruction set compatible
with the PDP-11 family of computers. It is conceivable that in the
next five years or so the power of a minicomputer system will be
available in a microcomputer. It will become possible to allow a
user to have a dedicated microcomputer rather than a part of a
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minicomputer time-sharing system. LSX is a step in this direction.
It will give the user a cost-effective interactive and powerful com-
puter system with a known response time to given requests, since
the machine is not time-shared. A dedicated, one-user system can
be made available to guarantee "instantaneous" response to requests
of a user. There are no unpredictable time-sharing delays to deal
with. The system has applications in areas where security is impor-
tant. A user can gain access to the system only in the room in
which the system resides. It is thus possible to limit access to a
user's data.

Local text-editing and text-processing features are now available.
Other features can be added easily. Interfaces to special I/O equip-
ment on the Q-bus for dedicated experiments can be added. The
user then has direct access to this equipment. Using floppy disks as
secondary storage gives the user a rather small data base. A link to
a larger machine can provide access to a larger data base. Interfaces
such as the DLV11 (serial interface) and the DRV-I I (parallel inter-
face) can provide access to other computers.

One of the main benefits of using the UNIX software base is that
the C compiler is available for writing application programs in the
structured high-level language, C. The use of the shell command
interpreter5 is also a great asset. A general hierarchical file system is
available.

The LSX system has two main areas of application:

(i) Control of dedicated experiments.
(ii) Intelligent terminals.

As a dedicated experiment controller, one can interface special I/O
equipment to the LSI-11 Q-bus and both support and control the
experiment with the same LSX system. The applications as an intel-
ligent terminal are many-fold:

(i) Development system.
(ii) General text-processing applications.

(iii) Form editor.
(iv) Two-dimensional cursor-controlled text editor.

III. HARDWARE CONSIDERATIONS

The hardware required to build a useful LSX system is minimal.
The absolute minimum pieces required are:

(i) LSI-11 microcomputer (with 4K memory).
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Fig. 1-[.si-I1 configuration.

(ii) 16K memory (e.g., dynamic MOs).
(iii) EIS chip (extended instruction set).
(iv) Floppy disk controller with one drive.
(v) DLV-11 serial interface.
(vi) Terminal with serial interface.
(vii) Power supply.
(viii) Cabinet.

A more flexible and powerful system is shown in Fig. 1. An actual
total system is shown in Fig. 2.

The instruction set of the LSI- II microcomputer is compatible

Fig. 2 - psi-11 system.
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Table I

Controller DEC BTL AED

Sector size (bytes) 128 512 512
Sectors per track 26 8 16
Number of tracks 77 77 77
Total capacity (bytes) 256256 315392 630784
DMA capability (y/n) no yes yes
Max. transfer rate 6656 24576 49152

with that of the members of the PDP-11 family of computers with
the exception of 10 instructions. The missing instructions are pro-
vided by means of the EIS chip. These special instructions may be
generated by high-level compilers, and it is advantageous not to
have to emulate these instructions on the microprocessor. The
instructions include the multiply, divide, and multiple shift instruc-
tions.

A floppy disk controller with up to 4 drives is shown in Fig. 1. At
present, only a few controllers for floppy disks interface to the
LSI-11 Q-bus. The typical rotation time of the floppy disks is 360
rpm, i.e., six times per second. All floppy disks have 77 tracks;
however, the number of sectors and the size of sectors is variable.
The comparative data for the various floppy diskettes are shown in
Table I. The maximum transfer rate is quoted in bytes per second.
The outside vendor (AED Systems*) supplies dual-density drives for
an increase in storage capacity. The DEC drives are IBM-compatible
and have less storage capacity. We have chosen to build our own
floppy disk controller for some special Bell System requirements.6
The advantages of DMA (direct memory access) capabilities are obvi-
ous in regard to ease of programming and transfer rate. If IBM for-
mat compatibility is important, the throughput and capacity of the
system are somewhat diminished.

At least one serial interface card is required to provide a terminal
for the user of the system. Provided the terminal uses the standard
Rs232C interface, most terminals are suitable. For quick editing
capabilities, CRT terminals are appropriate. For hard copy, either the
common TTY33 or other terminals which run at higher baud rates
may be more suitable.

The choice of memory depends on the importance of system size
and whether power-fail capabilities are important. Core memory is,
of course, nonvolatile, but it takes more logic boards and more

* Advanced Electronics Design, Inc., 440 Potrero Ave., Sunnyvale, California, 94086.
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space and is therefore more expensive than dynamic MOs memory.
Dynamic MOS memory does not take as much space, is less expen-
sive, and takes less power, but its contents are volatile in case of
power dips. Memory boards up to 16K words in size are available*
for the LSI-11 microprocessor at a very reasonable price. The
memory costs are likely to continue decreasing in the foreseeable
future.

Another serial or parallel interface is often useful for connection
to a larger machine with a large data base and a complete program
development and support system. It is, of course, necessary to use
such a connection to bootstrap up a system on the LSI-11 microcom-
puter. The central machine in this case is used to store all source
for the LSX system and to compile the binary object programs
required.

The system hardware is flexible enough so that, if necessary, a
bus extender may be used to interface special devices to the Q-bus.
This provides the ability to add special-purpose hardware that can
now be controlled by the LSX system. In Section XI we describe a
TV raster scan terminal that was built for editing and graphics appli-
cations. Other systems have interfaced special signal -processing
equipment to the Q-bus. As DEC provides more of the interfaces to
standard I/O peripherals, the applications will no doubt expand.

IV. LSX FILE SYSTEM

The hierarchical file structure of the UNIX system is maintained.
The system distinguishes between ordinary files, directories, and
special files. Device independence is inherent in the system.
Mounted file systems are also supported. Each file system contains
its own i-list of i-nodes which contain the file maps. Each i-node
contains the size, number of links and the block numbers in the file.
Space on disk is divided into 512-byte blocks. In contrast with the
UNIX file system, two types of ordinary files are allowed. The
"UNIX-type" file i-node contains the block numbers that make up a
file. If the file is larger than eight blocks, the numbers in the i-node
are pointers to the blocks which contain the block numbers. This
requires two accesses to the disk for random file access. Lsx recog-
nizes another type of file, the contiguous file, in which the i-node
contains a starting block number and the number of consecutive
blocks in the file. This requires only one disk access for a random

* Monolithic Memory Systems, Inc.
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access to a file, which is important for slow access devices such as
floppy disks. Two special commands are provided for dealing with
contiguous files; one for allocating space for a file and a second one
for moving a file into a contiguous area. The layout of the disk is
also crucial for optimum response to commands. By locating direc-
tories and i-nodes close to each other, file access is measurably
improved over a random distribution on disk.

There is no read/write protection on files. File protection is
strictly the user's responsibility. The user is essentially given
super-user permissions. Only execute and directory protection is
given on files. Group IDS are not implemented. File system space is
limited to the capacity of the diskette in use (616 blocks for the Bell
Laboratories controller).

V. LSX SYSTEM FEATURES

The LSX operating system is written in the C language, and, as
such, bears a strong resemblance to the multi-user UNIX system
developed for the PDP-11 /40, 11/45, and 11/70 computers. The
total system occupies 8K words of memory and has room for only
six system buffers. Because the C compiler itself requires up to 12K
words of user address space, it is possible to run the C compiler
using only 20K words of total memory. It is possible to increase the
system size if more capabilities are required in the operating system
since the total memory space available to the system and user is
actually 28K words. More system buffers could be provided in the
system. If the system is kept to 8K words, a 20K-word user pro-
gram could be run. However, this requires more swap space, which
is at a premium.

The system is a single-user system with only one process running
at any one time. A process is defined as the execution of an image
contained in a file. However, a process may fork up to two levels
deep, giving rise to a total of three active foreground processes.
The last process forked will run to completion first. More fore-
ground processes can be run, but this requires more swap space on
the diskette used for this purpose.

The command interpreter, the shell, is identical to that used in
the UNIX system. The file name given as a command is sought in
the current directory. If not found, /bin/ is prepended and the /bin
directory searched. The /bin directory contains all of the commands
generally used. Standard input, output, and diagnostic files are
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supported. Redirection of standard I/O is possible. Shell "scripts"
are also executable by the command interpreter.

"Pipes" are not supported in the system, but pseudo-pipes are
supported in the command shell. Pipes provide an interprocess
communication channel in the UNIX time-sharing system. These
pseudo-pipes are accomplished by expanding the shell syntax I to
> ._pf; < ._pf. In other words, a temporary file is used to store the
intermediate data passed between the commands. Providing that
sufficient disk space exists, the pipe implementation is transparent to
the user.

During initialization, the system automatically mounts a user file
system on a second diskette if it is desired. The mount and
unmount commands are not available to the user. Thus, a reboot
of the system is necessary to mount a new user diskette. The sys-
tem diskette is normally configured with swap space and temporary
file space. User programs and files may reside on the system
diskette if a user diskette is not mounted.

The size of memory available and the lack of memory protection
(i.e., memory segmentation unit) have put some restrictions on the
capabilities of the LSX operating system. However these are not
severe in the single-user environment in which the system is run.
Profiling is not provided in the system. Timing information only
becomes available if a clock interrupt is provided on the LSI-11
event line at 60 times per second. Only one character device driver
is allowed at present, as well as only one block device driver. No
physical I/O is provided for. There is also no read-ahead on file
I/O. Only six system buffers are provided, and the buffering algo-
rithm is much simpler than in the UNIX system. Interactive debug-
ging is not possible, but the planting of break-point traps and post-
mortem debugging of a core image is possible. All user programs
must be relocated to begin execution at 8K in memory. This
required modifications to the UNIX link edit (Id) and debugger (db)
programs. Most other differences between the LSX and the UNIX
systems are not perceived by the user.

VI. BACKGROUND PROCESS

It is possible to run a background process on LSX while running a
number of foreground processes to get some concurrency out of the
system. The background process is run only while the current fore-
ground process is in an input wait state. Two new system calls were
added to LSX, bground and kill, to enable the user to run and
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remove a background process. Only one background process is
allowed to run and it is not allowed to fork another "child" process;
however, it may execute another program. The background process
either may be compute-bound or may perform some I/O functions,
such as outputting to a hard-copy terminal. When the background
process is compute-bound, it may take up to 2 seconds to respond to
a foreground user's interactive command.

VII. STAND-ALONE ROUTINES

Under LSX, it is possible to run a dedicated program (<20K
words) in real time using all the conveniences of the UNIX system
calls to communicate with the file system. For programs that
require more than 20K words of memory or that require more flexi-
bility than provided by the LSX system, a set of subroutines provide
the user with a UNIX-compatible interface to the file system without
using the LSX system calls. A user is given more control over the
program. Disk I/O issued by the user is buffered using the read-
ahead and write-behind features of the standard UNIX system. A
much greater number of system buffers are provided than is possible
in the LSX system. Eight standard file system interface routines are
provided. The arguments required for each routine and the calling
sequence are identical to those required by the UNIX system C-
interface routines. These include: read, write, open , close, creat,
sync , unlink , and seek . Three unique routines: saread , sawrite,
and statio are provided to enable the user to do asynchronous I/O
directly into buffers in the user's area rather than into system
buffers. These additional routines allow a user to start multiple I/O
operations to and from multiple files concurrently, do some compu-
tation, and then wait for completion of a particular outstanding I/O
transfer at some later time. To provide real-time response in appli-
cations that require it, contiguous files may be created by means of
an salloc routine. The size of the file is specified in blocks. Once
created, the file may be grown by means of the sextend routine. A
load program under LSX enables the user to load a stand-alone pro-
gram that must start execution at location 0 in memory.

VIII. A PROGRAM DEVELOPMENT SYSTEM

One system disk has been configured to contain a fairly complete
program development system. The development programs include:
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the editor,
the assembler,
the C compiler,
the link editor,
the debugger,
the command interpreter,
and the dump program,

as well as a number of libraries that contain frequently used routines
for use by the link editor. It is thus possible to compile, run, and
debug application programs completely on-line without access to a
larger machine. In a typical application, the contents of the system
disk remain quite stable, whereas all user programs are maintained
on a permanently mounted user diskette. It is possible to run
minimal systems with only one diskette. Although, because of the
lack of protection, it is possible to crash the system, in practice, the
use of the high-level language C minimizes the number of fatal bugs
that actually occur, since the stack frame and program counter are
quite well controlled.

In our particular installation, it is often convenient to use the
Satellite Processor System7 to aid in the running and debugging of
new user programs. This is possible since programs running in the
LSI-11 satellite microcomputer behave as if they are running on the
central machine with access to its file system. This emulates the
environment on LSX quite closely. Thus a program may be com-
piled on a central machine supporting the C compiler, run on the
LSI-11 microcomputer, and debugged. When the program has been
completely debugged, it is possible to load the program onto the
floppy file system using the stand-alone routines described previ-
ously and the satellite processor system. This program may then be
run under LSX.

IX. TEXT PROCESSING SYSTEM

Another area of application for the LSX system is as a personal
computer system for text processing. Files may be prepared using
the editor and run off using the UNIX nroff command with a hard-
copy device. This system disk includes programs such as:

ed editor
cat output ASCII files
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pr print ASCII files
od octal dump files
roff formatter
nroff formatter
neqn mathematical equation formatter

The file transfer program referred to in the previous section enables
one to transfer files to or from a machine with a larger data base.
Users' files may be maintained on their personal mounted diskettes.
If a hard-copy device is attached to the computer as well as to the
user's interactive terminal, hard-copy output can be obtained using a
background process while another file is edited in the foreground.

X. SUPPORT OF AN LSX SYSTEM

The limited secondary storage capacity available to LSX on floppy
disks prevents the mounting of all the system source and user pro-
gram source code simultaneously. Thus one must be selective as to
which programs are mounted at any one time. If a great deal of pro-
gram development is desirable on LSX, it is often desirable to have a
connection to a host machine on which the source code for the
application programs can be maintained and compiled. Two means
are available to do this. One is to use the Satellite Processor Sys-
tem7 and the stand-alone routines described in a previous section as
a connection program. This enables one to transfer files (including
complete file systems) between the host machine and the satellite
processor. The SPS must exist on the host machine and the satellite
processor must not be too far distant from the host machine.

A second means of providing support for LSX software is to use a
serial line connection such as the DLV-1I between the host machine
and the LSI-11 processor. The connection may be either dedicated
or dial-up. It requires just five programs, three on the LSX system
and two on the host processor. The three programs on LSX include
a program to set up the connection to the host machine, i.e., login
as a user to the host machine, a program to transfer files from the
host to LSX, and a third program to transfer files from LSX to the
host. On the host machine, the programs include one to transfer a
file from the host to the LSX system and vice versa. Complete file
systems as well as individual files may be transferred. Checksums
are included to ensure error-free transmission.
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XI. LSX SYSTEM USES

The LSX system has been put to a number of innovative uses at
Bell Laboratories . These include projects that use it as a research
tool, for exploratory development in intelligent terminals , and for
software support for dedicated applications . LSX is well-suited for
the control of an intelligent terminal . As an example, some dual-
ported memory has been interfaced to the LSI-11 Q-bus. One port
allows direct reading and writing of this memory by the LSI-11 CPU.
The other port is used by a microcontroller to display characters on
a TV raster scan screen . This enables one to change screen contents
"instantaneously ." The terminal is suitable for either a two-
dimensional text editor or form entry applications. LSX is being
used as a vehicle for investigating the future uses of programmable
terminals in an office environment for word processing applications.

Other LSX installations are being used to control dedicated
hardware configurations . One of the most exciting and in fact the
original application for LSX was the software support system for a
digital sound synthesizer system. Here the contiguous files sup-
ported by LSX are necessary for the real-time application , written as
a stand -alone program consisting of a complex multiprocessing sys-
tem controlling about 100 processes .8 The system is capable of
existing as a completely stand -alone system and of providing pro-
gram support on itself.

XI1. SUMMARY

The LSX system is currently being used for research in intelligent
terminals and in stand-alone dedicated systems. Plans exist to use
this system for further research in other areas of Bell Laboratories.
Hard-copy features have yet to be incorporated into the system in a
clean fashion. Currently, our system is connected to a larger
machine using the Satellite Processor System. More general connec-
tions to larger machines or possibly to a network of machines has
yet to be investigated. The LSX system also has potential uses in
multiterminal or cluster control terminal systems where multitasking
features are important. These application areas have only been
looked at superficially and warrant further investigation.

As a development system, LSX functions quite well. The response
to most programs is only a factor of four or so slower than on the
conventional minicomputers, due mainly to the slow secondary
storage devices used by LSX. Optimization of file storage allocation
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on secondary should somewhat improve the response. For instance,
the placement of directories close to the i-nodes has improved
throughput significantly. The placement of the system swap area
needs more investigation as to its effect on throughput.

The advent of large memory boards (64K words) will require the
installation of memory mapping to take full advantage of this large
address space. This will enable the running of multiple processes
without the need for swapping a process out of primary memory and
should also improve the response of the system and increase the
number of uses to which it can be put.

There is a necessary loss of some functions in the LSX system
because of the size of the memory address space available on the
LSI-11 computer. However, as a single user system, most functions
are still available to the user. As an intelligent terminal system, a
microprocessor with all of the UNIX software available is indeed
quite a desirable "intelligent" terminal.
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A software support system for a network of minicomputers and micro-

computers is described. A powerful time-sharing system on a central

computer controls the loading, running, debugging, and dumping of pro-

grams in the satellite processors. The fundamental concept involved in

supporting these satellite processors is the extension of the central proces-

sor operating system to each satellite processor. Software interfaces per-

mit a program in the satellite processor to behave as if it were running in

the central processor. Thus, the satellite processor has access to the cen-

tral processor's 1/0 devices and file system, yet has no resident operating

system. The implementation of this system was considerably simplified by

the fact that all processors, central and satellite, belong to the same fam-

ily of computers (DEC PDP-11 series. We describe some examples of

how the SPS is used in various projects at Bell Laboratories.

1. INTRODUCTION

The satellite processor system (SPS) and the concept of a satellite
processor have evolved over the years at Bell Laboratories to pro-
vide software support for the ever-increasing number of mini- and
microcomputer systems being used for dedicated applications. The
satellite processor concept allows the advantages of a large comput-
ing system to be extended to many attached miniprocessors, giving
each satellite processor (se) access to the central processor's (CP)
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file system, software tools, and peripherals while retaining the real-
time response and flexibility of a dedicated minicomputer. Since the
cost of the peripherals for a minicomputer often far exceeds the cost
of its CPU and memory, the CP provides a pool of peripherals for the
support of many SP's. Although each sP requires a hardware link to
a CP, the idea of a satellite processor is basically a software concept.
It allows a user program, which might normally run in the CP using
its operating system, to run in an SP with no resident operating sys-
tem.

This paper describes the hardware and software required for SPS,
the concepts involved in SPS, and how these concepts can be
extended to provide even more powerful tools for the SP. Several
examples of the use of the SPS in Bell Laboratories projects are
described.

II. HARDWARE CONFIGURATION

The particular SPS hardware configuration described here consists
of a DEC PDP-11/45 central computers with a number of satellite
processors attached using a serial I/O loop2 as one of the communi-
cation links between the SP's and the CP (see Fig. 1). Other satellite
processors are attached using DR11C, DLII, and DHI1 devices (see
below). Each SP is a member of the DEC PDP-11 family of comput-
ers, with its own set of special I/O peripherals and at least 4K 16-bit
words of memory. A local control terminal is optional. The central
computer has 112K 16-bit words of main memory and 96 megabytes
of on-line storage. Eight dial-up lines and various other terminals
are available for interaction with the UNIX* time-sharing system,3
supported by the MERT operating system.4 Magnetic tape is avail-
able as one peripheral device for off-line storage of files. Access to
line printers, punched card equipment, and hard-copy graphics
devices is available through the connection to the central computing
facility for Bell Laboratories.

III. COMMUNICATION LINKS

A number of satellite processor systems have been installed in
various hardware configurations using both the UNIX and the MERT
operating systems. The devices supported as communication links
include the serial I/O loop mentioned above, the DL11 asynchronous

. UNIX is a trademark of Bell Laboratories.
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Fig. 1-Satellite processor hardware configuration.

line interface unit and the DHI1 multiplexed asynchronous line
interface unit. These are all essentially character - at-a-time transfer

devices . The asynchronous line units may be run up to a baud rate
of 9600 . The most efficient communication link is the UNIBUS link
device, which is a direct memory access device permitting a transfer
rate of 100,000 words per second . However , the device limits the
inter-processor distance to 150 feet. Another efficient link is the
DR11c device, which permits word-at-a-time transfers . Its actual
transfer rate is limited by software to about 10,000 words per
second.

The choice of communication link is based on the distance
between the sP and the cP, data transfer rate requirements , and the

cost of the link. The I/O loop allows an SP to be placed at least
1000 feet from the CP and supports a data transfer rate of 3000
words per second . Thus , an SP with 16K words of memory can be

loaded in 5 seconds.
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The satellite processor concept extends an operating system on a
CP to multiple SPs. In an operating system such as the UNIX system,
the interface or communication between a user program and the sys-
tem is by means of the system call. These UNIX system calls manipu-
late the CP file system and other resources managed by the operating
system. In the SP concept, the interface between a user program
running in the SP and the operating system which is being emulated
by the central processor is also the system call (see Fig. 2), except
that here the extension is achieved by trapping the system call in the
SP and passing the system call and its arguments to the cP. A pro-
cess running in the CP on behalf of the SP then executes the system
call and passes the results back to the SP. Control is then returned
to the SP user program. Each SP executes a program locally, has
access to the CP's file system and peripherals by means of the sys-
tem call, and yet does not contain an operating system. This tech-
nique of partitioning a program at the UNIX system call level pro-
vides a clean, well-defined communication interface between the
processors.

The local SP software required to support SPS consists of two small
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functional modules, a communication package and a trap handler.
The communication package transfers data between the SP and the
CP on behalf of the program running in the SP. The trap handler
catches processor traps (including system call traps) within the SP on
behalf of the sP user program and determines whether to handle
them locally or transmit the trap to the CP via the communication
package.

4.1 SP communication package

The satellite processor communication package resides in the SP at
the top of available memory and occupies less than 300 words.
Actual size depends on the communication link used. The com-
munication package normally resides in read-only memory. The
functional requirements of the communication package include CP-SP
link communication protocol, interpreting and executing CP com-
mands, and sending trap conditions to the CP. The basic element of
communication over a CP-SP link is an 8-bit byte, and messages from
the CP to the SP are variable length strings of bytes containing com-
mands and data. The SP communication package is able to distin-
guish commands from data by scanning for a special prefix byte.
This prefix byte is followed by one of five command code bytes.
Following is a list of the five commands and their arguments, which
can be sent from the cP to the SP.

read memory
write memory
transfer
return
terminal i/o

address nbytes
address nbytes
address

Each argument is two bytes (16 bits) and is sent twice, the second
byte pair being the twos complement of the first to ensure error free
transmission. Also, the data following the read memory and write
memory commands have a checksum associated with them to
guarantee proper transmission. If within the byte stream of data, a
data byte corresponds to the command prefix, it is followed by an
escape character to avoid treatment as a command.

This communication package is sufficient to enable the user at an
sp terminal to communicate with the CP as a standard login terminal.
When the SP communication package is started, it comes up in ter-
minal i/o mode, passing all characters from the local SP terminal to

MINICOMPUTER SPS 2107



the cp over the communication link. In the reverse direction, all cp
output is printed on the local SP terminal. The five communication
commands listed above are only invoked when a program is down-
loaded and executed in the sp. The read memory and write
memory commands are used to read and write the memory of the
sp, respectively, starting at the specified address, address and con-
tinuing for nbytes bytes. The transfer command is used to force
the SP to transfer to a specified address in the SP program, normally
the beginning of the program. The return command is used to
return control back to the SP at the address saved on the sP stack.
When the cp wishes to write on or read from the local SP terminal,
the SP is given the terminal i/o command.

4.2 SP trap handler

The second functional module which must be loaded into the SP is
the trap handler. It is prepended to each program to be executed in
the sP. This is the front-end package which must be link-edited
with the object code produced by a UNIX compiler. The trap handler
catches all SP traps and passes those that it cannot handle to the Cp
via the communication package. The trap handler determines the
trap type (and, in the case of system call or SYS traps, the type of
Sys trap). If the trap is an illegal instruction trap, the handler will
determine if it has the capability to emulate this instruction, or
whether it must be passed to the CP. If the trap is to be passed to
the CP, a five-word communication area in the SP is filled with the
state of the sP at the time of the trap. The communication package
causes an interrupt to occur in the CP, thereby alerting the cP pro-
cess running on behalf of the SP. The SP trap state is then read from
the communication area and, upon processing this trap in the cP,
the Cp process passes argument(s) back in the communication area
of the SP. Control is then returned to the sP.

The trap handler also monitors the sP program counter and local
sp terminal 60 times a second using the 60-Hz clock in the satellite
processor. This permits profiling a program running in the SP and
controlling it from the local SP terminal. Upon detecting either a
rubout character (delete) or a control backslash character (quit)
from the local sp terminal, a signal is passed back to the CP, causing
the SP program to abort if these signals are not handled by the SP
process. At the same time a check is made to see if there have been
any delete or quit signals from the cP process. If the sP has no
local terminal, setting a -1 in the switch register will turn control
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Table I

Instruction PDP-11 /20 PDP-11 /45

mul (multily) 830 µs 3.8 µs
div (dividp 1200 7.5
ash (shift) 660 1.5
ashc (double shift) 720 1.5
xor (exclusive or) 440 0.85
sob (sub . and branch) 400 0.85
sxt (sign extend) 400 0.85

over to the CP process. If an undebugged program in the SP halts,
restarting it at location 2 will force an iot trap to the system trap
handler, which in turn causes the memory of the SP to be dumped
into a core file on the CP.

The trap handler consists of up to four separate submodules:

(i) Trap vectors, communication area, trap routines (400 words)
(ii) PDP-11/45 instruction emulation package (500 words)

(iii) Floating point instruction emulation package (1000 words)
(iv) Start-up routine.

Of these, the first is always required. The illegal instruction emula-
tion packages are loaded from a library only if required. The start-
up routine depends on the options specified by the user of the pro-
gram to be loaded.

Estimates have been made of the execution time of the various
emulation routines. The times are approximate and assume a PDP-
11/20 sP, a PDP-11/45 cp, and an I/O loop connecting them.

The running times for the PDP-11/45 instructions emulated in the
SP are shown in Table I. If execution time is important in a SP pro-
gram, these instructions should be avoided. In C programs, these
instructions are generated not only when explicit multiplies, divides,
and multiple shifts are written, but also when referencing a structure
in an array of structures. Using a PDP-11/35 or PDP-11/40 with a
fixed point arithmetic unit as an SP would reduce the execution time
for these instructions.

The average times to emulate floating point instructions in the SP
are shown in Table II. For applications which require large

Table II

Instruction PDP-11 /20 PDP-11 /45

add 2100 µs 4 µs
sub 2300 4
mul 3500 6
div 5600 8
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quantities of CPU time running Fortran programs , it is possible to

use a PDP-11/45 CPU with a floating point unit as an sp.

V. CP EMULATION OF TRAPS

During the time that the SP is executing a program, the associated
CP process is roadblocked waiting for a trap signal from the SP.
Upon receiving one, the CP process reads the SP trap state from the
communication area, decodes the trap, and emulates it, returning
results and/or errors. A check is also made to see if a signal (quit,
delete , etc.) has been received.

Of the more than 40 UNIX system calls5 emulated, about 30 are
handled by simply passing the appropriate arguments from the sp to
the cp process and invoking the corresponding system call in the cp.
The other 10 system calls require more elaborate treatment. Their
emulation is discussed in more detail here.

To emulate the signal system call, a table of signal registers is set
aside in the CP process, one for each possible signal handled by the
UNIX system. No system call is made by the cp process to handle
this trap code. When a signal is received from the SP, this table is
consulted to determine the appropriate action to take for the CP pro-
cess. The Sp program may itself catch the signals. If a signal is to
cause a core dump, the entire SP memory is dumped into a Cp core
file with a header block suitable for the UNIX debugger.

The stty and gtty system calls are really not applicable to the SP
process, but if one is executed, it will be applied to the cp process's
control channel. The prof system call is emulated by transferring
the four arguments to the profile buffer in the sp memory. Upon
detecting nonzero entries here during each clock tick (60 times per
second), the SP will collect statistics on the SP program's program
counter. Upon completion of the sp program, data will be written
out on the mon.out file. The sbrk system call causes the CP process
to write out zeros in the SP memory to expand the bss area avail-
able to the program. An exit system call changes the communica-
tion mode between the SP and the CP back to the original terminal
operation mode. It then causes the CP process to exit, giving the
reason for the termination of the Sp program.

The three most time-consuming system calls to emulate are read,
write, and exec . The exec system call involves loading the execut-
able file into the sP memory, zeroing out the data area in the SP
memory, and setting up the arguments on the stack in the Sp. A
system read call involves reading from the appropriate file and then
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transfering this data into the sP buffer. The system write call is just
the reverse procedure.

The fork, wait and pipe system call emulations have not been
written at this time and are trapped if executed in a sp. One possi-
ble means of emulating the fork call would be to copy an image of
the parent process in one SP into another sp, permitting the piping
of data between two sps.

VI. TYPICAL SESSION

Supporting a mini-PDP-11 as an SP on a CP running the UNIX sys-

tem combines all the advantages of the UNIX system programming

support with the real-time response and economic advantage of a

stand-alone PDP-11. In a typical SP programming session, a pro-

grammer sitting at the local SP terminal logs into the CP and uses the

UNIX editor to update an sp program source file. It could be assem-

bly language or one of the higher-level languages available on the

UNIX system (C, Lil,* Fortran). Assume a C source file prog.c.

When the edit is complete, the following commands are issued:

% cc -c prog.c
% Idm -me prog.o

% 111 a.out

cc -c compiles the C program prog .c in the cP and produces the
object file prog .o. Idm -me combines the SP trap handler (-m) and
instruction emulator (e) with the C object file prog .o, generating an
a.out object file. 111 loads the a.out file into the SP, and starts it
with the SP terminal as the standard input and output. The pro-
grammer then observes the results of running the program or forces
a core dump, and uses the UNIX debugger to examine it. If any pro-
gram changes are required, the preceding steps are repeated. During
this typical Sp support sequence, the programmer initiates the edit-
ing, compiling, loading, running, and debugging of a program on a
mini-PDP-11 without leaving its control terminal. It is the speed and
convenience of this procedure along with the availability of high-
level languages that make the satellite processor concept a powerful
mini-PDP-11 support tool.

* Lil is a little implementation language for the PDP-11.
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V11. USES

Some sP's may be disconnected from the CP when their software
has been developed and the final product is a "stand-alone" system.
Other sPs may always have a cp connection; they supply the real-
time response unavailable from the cP, combined with access to the
cP's software base, file system, peripherals, and connection to the
computing community.

One use of the sPS system is discussed in a paper in this issue.6
Here LSI-11 microcomputers connected to a cp by means of a DH1I
device are used in a materials research laboratory, remote from the
CP, to collect data, control apparatus and machinery, and analyze the
results.

One of the more interesting applications of the satellite processor
system is its use to support a digital sound synthesizer system. The
hardware consists of an LSI-11 processor with 24K words of
memory, two floppy disks, a TV raster scan terminal, and much
more special digital circuitry interfaced to the LSI-11 Q-bus to pro-
vide the control of the DSSS. The heart of the software consists of a
multi-tasking system designed to handle about 100 processes.? The
basic program directs the machine's output devices such as oscilla-
tors, filters, multipliers, and a reverberation unit. The data for the
program are stored and retrieved from the floppy disk. The SPS is
used to download programs from the cP and produce core dumps of
the LSI-11 memory back at the cP for debugging purposes. The CP
is also used for program development.

VIII. SUMMARY

The advantages of the sps system are the use of higher level

languages, ease of program development and maintenance, use of

debugging tools, interactive turn-around, use of a common pool of

peripherals, access to files on the cp secondary storage, and connec-

tion to central computing facilities. The sP requires a minimum

amount of memory since it does not contain an operating system or

other supporting software. One additional advantage is that any sP

may be located in a remote laboratory location.

The ability to extend an operating system to an sP may be used
for purposes other than supporting software development for the SP.
A new operating system environment may be defined by rewriting
the cP process which acts on behalf of the sP program. In this way a
new set of "system calls" emulating another operating system may
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be extended to an sP. sps other than PDP-11s may also be supported
by writing an appropriate sP communication package and CP inter-
face package. Cross compilers would be required on the CP to sup-
port software development for these non-PDP-11 processors.

Another avenue of research which has not yet been explored with
the sps concept is that of distributed computing. With a powerful
SP, e.g. PDP-11/45, a compute-bound program could run on the sP
rather than on the CP itself, thereby transferring the real-time load
from the CP to the sP. The CP would only be called upon to load the
program initially and to satisfy certain file requests. The total com-
puting power of the system would increase greatly without duplicat-

ing the entire computer system.
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The UNIX* operating system provides programs for sophisticated docu-

ment preparation within the framework of a general-purpose operating

system. The document preparation software includes a text editor, pro-

grammable text formatters, macro-definition packages for a variety of

page layout styles, special processors for mathematical expressions and

for tabular material, and numerous supporting programs, such as a

spelling-mistake detector. In practice, this collection of facilities has pro-

ven to be easy to learn and use, even by secretaries, typists, and other

nonspecialists. Experiments have shown that preparation of complicated

documents is about twice as fast as on other systems. There are many

benefits to using a general-purpose operating system instead of specialized

stand-alone terminals or a system dedicated to "word processing. " On the

UNIX system, these include an excellent software development facility and

the ability to share computing and data resources among a community of

users.

1. INTRODUCTION

We use the term document preparation to mean the creation,
modification, and display of textual material, such as manuals,
reports, papers, and books. "Document preparation" seems prefer-
able to "text processing" (which is not particularly precise), or

UNIX is a trademark of Bell Laboratories.
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"word processing" (which has acquired connotations of stand-alone
specialized terminals).

Computer-aided document preparation offers some clear benefits.
Text need be entered only once. Thereafter, only those portions
that need to be changed require editing; the remaining material is
left alone. This is a significant labor reduction for any document
that must be modified or maintained over a period of time.

There are many other important benefits. Special languages can
be used to facilitate the entry of complex material such as tables and
mathematical expressions. The style or format of a document can
be decoupled from its content; the only format-control information
that need be embedded is that describing textual categories and
boundaries, such as titles, section headings, paragraphs, and the like.
Alternative document styles are then possible through the use of
different formatting programs and different interpretations applied to
the embedded format control. Furthermore, programs can examine
text to detect spelling mistakes, compare versions of documents,
and prepare indexes automatically. Machine-generated data can be
incorporated in documents; excerpts from documents can be fed to
programs without transcription.

A variety of comparatively elegant output devices has become
available, supplementing the traditional typewriters, terminals, and
line printers; this has led to a much increased interest in automated
document preparation. Automated systems are no longer limited to
straight text composed in unattractive constant-width characters, but
can produce a full range of printed documents in attractive fonts and
page layouts. The major example of an output device with
significant capabilities is the phototypesetter, which produces very
high quality printed output on photographic paper or film. Other
devices include typewriter-like terminals capable of high-resolution
motion, dot matrix printer-plotters, microfilm recorders, and xero-
graphic printers.

Further advantages accrue when document preparation is done on
a general-purpose computer system. One is the opportune sharing
of programs and data bases among users; programs originally written
for some other purpose may be useful to the document preparer.
Having a broad range of users, from typists to scientists, on the
same system leads to an unusual degree of cooperation in the
preparation of documents.

The UNIX document preparation software includes an easy-to-
learn-and-use text editor, ed, which is the tool for creating and
modifying any kind of text, from documents to data to programs.
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Two programmable text formatters , nroff and troff, provide pagina-
ted formatting and allow unusual freedom and flexibility in deter-
mining the style of documents . Augmented by various macro-
definition packages, nroff and troff can be programmed to provide
footnote processing , multiple-column output, column - length balanc-
ing, and automatic figure placement . An equation preprocessor,
eqn, translates a simple language for describing mathematical
expressions into formatter input ; a table -construction preprocessor,
tbl, provides an analogous facility for input of data and text that is
to be arranged into tables.

We then mention other programs useful to the document preparer
and summarize some comparisons between manual methods of
document preparation and methods using UNIX document prepara-
tion software.

II. TEXT EDITING

The UNIX text editor ed is the basic tool for entering text and for
subsequent modifications. We will not try to give a complete
description of ed here; details may be found in Ref. 1. Rather, we
will try to mention those attributes that are most interesting and
unusual.

The editor is not specialized to any particular kind of text; it is
used for programs, data, and documents alike. It is based on editing
commands such as "print" and "substitute," rather than on special
function keys, and provides convenient facilities for selecting the
text lines to be operated on and altering their contents. Since it
does not use special function keys or cursor controls, it does not
require a particular kind of input device. Several alternative editors
are available that make use of terminals with cursors, but these have
been much less widely used; for most purposes, it is fair to say that
there is only one editor.

A text editor is often the primary interface between a user and the
system, and the program with which most user time is spent.
Accordingly, an editor has to be easy to use, and efficient of the
user's time-editing commands have to "flow off the fingertips." In
accordance with this principle, ed is quite terse. Each editor com-
mand is a single letter, e.g., p for "print," and d for "delete." Most
commands may be preceded by zero, one, or two "line addresses" to
affect, respectively, the "current line" (i.e., the line most recently
referenced), the addressed line, or the range of contiguous lines
between and including the pair of addresses. There are also
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shorthands for the current line and the last line of the file. Lines
may be addressed by line number, but more common usage is to
indicate the position of a line relative to the current or last line.
Arithmetic expressions involving line numbers are also permitted:

-5,+5p

prints from five lines before the current line to five lines after, while

$ - 5,$p

prints the last six lines. In both cases, the current line becomes the
last line printed, so that subsequent editing operations may begin
from there.

Most often, the lines to be affected are specified not by line
number, but by "context," that is, by naming some text pattern that
occurs in them. The "line address"

/abc/

refers to the first line after the current line that contains the pattern
abc. This line address standing by itself will find and print the next
line that contains abc, while

/abc/d

finds it and deletes it. Context searches begin with the line immedi-
ately after the current line, and wrap around from the end of the file
to the beginning if necessary. It is also possible to scan the file in
the reverse direction by enclosing the pattern in question marks:
?abc? finds the previous abc.

The substitute command s can replace any pattern by any literal
string of characters in any group of lines. The command

s/ofrmat /format/

changes ofrmat to format on the current line, while

1,$s/ofrmat /format/

changes it everywhere. In both searches and substitute commands,

the pattern // is an abbreviation for the most recently used pattern,

and & stands for the most recently matched text. Both can be used

to avoid repetitive typing. The "undo" command u undoes the

most recent substitution.

Text can be added before or after any line, and any group of con-
tiguous lines may be replaced by new lines. "Cut and paste" opera-
tions are also possible-any group of lines may be either moved or
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copied elsewhere. Individual lines may be split or coalesced; text
within a line may be rearranged.

The editor does not work on a file directly, but on a copy. Any
file may be read into the working text at any point; any contiguous
lines may be written out to any file. And any UNIX command may
be executed from within the editor, even another instance of the
editor.

So far, we have described the basic editor features: this is all that
the beginning user needs to know. The editor caters to a wide
variety of users, however, and has many features for more sophisti-
cated operations. Patterns are not restricted to literal character
strings, but may include several "metacharacters" that specify char-
acter classes, repetition of characters or classes, the beginning or end
of a line, and so on. For example, the pattern

/^[0-91/

searches for the next line that begins with a digit.
Any set of editing commands may be done under control of a

"global" command: the editing commands are performed starting at
each line that matches a pattern specified in the global command.
As the simplest example,

g/interesting/p

prints all lines that contain interesting.

Finally, given the UNIX software for input-output redirection, it is
easy to make a "script" of editing commands in advance, then run it
on a sequence of files.

The basic pattern-searching and editing capabilities of ed have
been co-opted into other, more specialized programs as well. The
program grep ("global regular expression print") prints all input
lines that contain a specified pattern; this program is particularly use-
ful for finding the location of an item in a set of files, or for culling
items from larger inputs. The program sed is a variant of ed that
performs a set of editing operations on each line of an input stream
of arbitrary length.

III. TROFF AND NROFF - BASIC TEXT FORMATTERS

Once a user has entered a document into the file system, it can be
formatted and printed by troff and nroff.2 These are programmable
text formatters that accommodate a wide variety of formatting tasks
by providing flexible fundamental tools rather than specific features.
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A trap mechanism provides for action when certain conditions
occur. The conditions are position on the current output page,
length of a diversion, and an input line count. A macro associated
with a vertical page position is automatically invoked when a line of
output falls on or after the trap position. For example, reaching a
specified place near the bottom of the page could invoke a macro
that describes the bottom margin area. Similarly, a vertical position
trap may be specified for diverted output. An input line count trap
causes a macro to be invoked after reading a specified number of
input text lines.

A variety of parameters are available to the user in predefined
number registers. In addition, users may define their own registers.
Except for certain predefined read-only registers, a number register
can be read, written, automatically incremented or decremented, and
interpolated into the input in a variety of formats. One common
use of user-defined registers is to automatically number sections,
paragraphs, lines, etc. A number register may be used any time
numerical input is expected or desired. In most circumstances,
numerical input may have appended scale factors representing
inches, points, ems, etc. Numerical input may be provided by
expressions involving a variety of arithmetic and logical operators.

A mechanism is provided for conditionally accepting a group of
lines as input. The conditions that may be tested are the value of a
numerical expression, the equality of two strings, and the truth of
certain built-in conditions.

Certain of the parameters that control text processing constitute
an environment, which may be switched by the user. It is con-
venient, for example, to process footnotes in a separate environ-
ment from the main text. Environment parameters include line
length, line spacing, indent, character size, and the like. In addi-
tion, any collected but not yet output lines or words are a part of the
environment. Parameters that are global and not switched with the
environment include, for example, page length, page position, and
macro definitions.

It is not possible to give any substantial examples of troff macro
definitions, but we will sketch a few to indicate the general style of
use.

The simplest example is to provide pagination-an extra space at
the top and bottom of each page. Two macros are usually
defined-a header macro containing the top-of-page text and spac-
ings, and a footer macro containing the bottom-of-page text and
spacings. A trap must be placed at vertical position zero to cause
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the header macro to be invoked and a second trap must be placed at
the desired distance from the bottom for the footer. Simple macros
merely providing space for the margins could be defined as follows.

.de hd begin header definition
sp 1i space 1 inch

\" end of header definition
.de fo \" footer
'bp \" space to beginning of next page

\" end of footer definition
.wh 0 hd \" set trap to invoke hd when at top of page
.wh -1i fo \" set trap to invoke fo 1 inch from bottom

The sequence \" introduces a troff comment.
The production of multi-column pages requires somewhat more

complicated macros. The basic idea is that the header macro records
the vertical position of the column tops in a register and initializes a
column counter. The footer macro is invoked at the bottom of each
column. Normally it increments the column counter, increments
the page offset by the column width plus the column separation, and
generates a reverse vertical motion to the top of the next column
(the place recorded by the header macro). After the last column,
however, the page offset is restored and the desired bottom margin
functions occur.

Footnote processing is complicated; only the general strategy will
be summarized here. A pair of macros is defined that allows the
user to indicate the beginning and end of the footnote text. The
footnote-start macro begins a diversion that appends to a macro in
which footnotes are being collected and changes to the footnote
environment. The footnote-end macro terminates the diversion,
resets the environment, and moves the footer trap up the page an
amount equal to the size of the diverted footnote text. The footer
eventually invokes and then removes the macro containing the accu-
mulated footnotes and resets its own trap position. Footnotes that
don't fit have their overflow rediverted and are treated as the begin-
ning footnote on the next page.

The use of preprocessors to convert special input languages for
equations and tables into troff input means that many documents
reach troff containing large amounts of program-generated input.
For example, a simple equation might produce dozens of troff input
lines and require many string definitions, redefinitions, and detailed
numerical computations for proper character positioning. The troff
string that finally contains the equation contains many font and size
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changes and local motion, and so can become very long. All of this
demands substantial string storage, efficient storage allocation, larger
text buffers than would otherwise be necessary, and the accommo-
dation of large numbers of strings and number registers. Input gen-
erated by programs instead of people severely tests program robust-
ness.

IV. MACROS-DECOUPLING CONTENT AND FORMAT

Although troff provides full control over typesetter (or typewriter)
features, few users exercise this control directly. Just as program-
mers have learned to use problem-oriented languages rather than
assembly languages, it has proven better for people who prepare
documents to describe them in terms of content, rather than speci-
fying point sizes, fonts, etc., in a typesetter-oriented way. This is
done by avoiding the detailed commands of troff, and instead
embedding in the text only macro commands that expand into troff
commands to implement a desired format.

For example, the title of a document might be prefaced by

.TL

which would expand, for this journal, into "Helvetica Bold font, 14
point type, centered, at top of new page, preceded by copyright
notice," but for other journals might be "Times Roman, left
adjusted, preceded by a one-inch space," or whatever is desired. In
a similar way, there would be macros for other common features of
a document, such as author's name, abstract, section, paragraph,
and footnote.

Macro packages have been prepared for a variety of document
styles. Locally, these include formal and informal internal
memoranda; technical reports for external distribution; the Associa-
tion for Computing Machinery journals; some American Institute of
Physics journals; and The Bell System Technical Journal. All these
macro packages recognize standard macro names for titles, para-
graphs, and other document features. Thus, the same input can be
made to appear in many different forms, without changing it.

An important advantage of this system is the ease with which new
users learn document preparation. It is necessary only to learn the
correct way to describe document content and boundaries, not how
to control the typesetter at a detailed level. A typist can easily learn
the dozen or so most common macros in a few minutes, and
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another dozen as needed. This entire article uses only about 30 dis-
tinct macro calls, rather more than the norm.

Although nroff is used for typewriter-like output, and troff for
photocomposition, they accept exactly the same input language, and
thus hide details of particular devices from users. Macro packages
also provide a degree of independence: they permit a uniformity of
input, so that input documents look the same regardless of the out-
put format or device they eventually appear in. This means that to
find the title of a document, for example, it is not necessary to
know what format is being used to print it. Finally, macros also
enforce a uniformity of output. Since each output format is defined
in appearance by the macro package that generates it, all documents
prepared in that format will look the same.

V. EON-A PREPROCESSOR FOR MATHEMATICAL
EXPRESSIONS

Much of the work of Bell Laboratories is described in technical
reports and papers containing significant amounts of mathematics.
Mathematical material is difficult to type and expensive to typeset by
traditional methods. Because of positioning requirements and the
multiplicity of characters, sizes, and fonts, it is not feasible for a
human to typeset mathematics directly with troff commands. troff is
richly endowed with the facilities needed for preparing mathematical
expressions, such as arbitrary horizontal and vertical motions, line-
drawing, size changing, etc., but it is not easy to use these facilities
directly because of the difficulty of deciding the degree of size
change and motion suitable in every circumstance. For this reason,
a language for describing mathematical expressions was designed;
this language is translated into troff by a program called eqn.

An important requirement is that the language should be easy to
learn and use by people who don't know mathematics, computing,
or typesetting. This implies that normal mathematical conventions
about operator precedence, parentheses, and the like cannot be
used, for otherwise the user would have to understand what was
being typed. Further, there should be very few rules, keywords,
special symbols, and few exceptions to the rules. Finally, standard
actions should take place automatically-size and font changes
should follow normal mathematical usage without user intervention.

When a document is typed, mathematical expressions are entered
as part of the text, but are marked by user-settable delimiters. eqn
reads this input and passes through untouched those parts that are
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not mathematics. At the same time, it converts the mathematical
parts into the necessary troff commands. Thus normal usage is a
pipeline of the form

eqn files I troff

The language is defined by a Yacc5 grammar to insure regularity
and ease of change . We will not describe the eqn language in
detail; see Refs. 6 and 7 . Nonetheless , it is worth showing a few
examples to give a feeling for the language . Throughout this section
we write expressions exactly as they are typed by the user , except
that we omit the delimiters that mark the beginning and end of each
expression.

eqn is an oral (or perhaps aural ) language. To produce

2ir f sin(wt)dt

one writes

2 pi int sin ( omega t)dt

Each "word" in the input is looked up in a table. In this case, pi
and omega are recognized as Greek letters, int is a special charac-
ter, and sin is to be placed in Roman font instead of italic, following
conventional practice. Parentheses and digits are also made Roman,
and spacing is adjusted around characters to give a more pleasing
appearance.

Subscripts, superscripts, fractions, radicals, and the like are intro-
duced by words used as operators:

xz
2 = pzz^ +qz+r
a

is produced by

x sup 2 over a sup 2 - sqrt (pz sup 2 + qz + r)

The operator sub produces a subscript in the same manner as sup
produces a superscript. Braces ( and } are used to group items that
are to be treated as a unit, such as all the terms to go under the rad-
ical. eqn input is free-form, so blanks and new lines can be used
freely to make the input easier to type, read, and subsequently edit.
The tilde is used to force extra space into the output when
needed.

More complicated expressions are built from the same piece parts,
and perhaps a few new ones. For example,
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erf (z) 2 over sqrt pi int sub 0 sup z

e sup -t sup 2 dt

produces

erf (z) = JoZe-1 2dt

while

zeta (s) - sum from k=1 to inf

k sup -s ------ (Re --- s > 1)

is

^(s) = Ik-s (Re s>1)
k=1

and

lim from {x -> pi /2) ( tan --.x) sup (sin---2x) - 1

yields

lim (tan x) sin 2x = 1
x- 7r /2

In addition, there are built-up brackets, braces, etc.; matrices;
diacritical marks such as dots and bars; font and size changes to
override defaults; facilities for lining up equations; and macro sub-
stitution.

Because not all potential users have access to a typesetter, there is
also a compatible version of eqn that interfaces to nroff for produc-
ing output on terminals capable of half-line motions and printing
special characters. The quality of terminal output leaves something
to be desired, but it is often adequate for proofreading and some
internal uses.

The eqn language has proven to be easy to learn and use; at the

present time, well over a hundred typists and secretaries use it at

Bell Laboratories. Most are either self-taught, or have learned it as

part of a course in UNIX system procedures taught by other secre-

taries and typists. Empirically, mathematically trained users

(mathematicians, physicists, etc.) can learn enough eqn in a few

minutes to begin useful work, for its syntax and rules are very simi-

lar to the way that mathematics is actually spoken. Persons not

trained in mathematics take longer to get started, because the

language is less familiar, but it is still true that an hour or two of

instruction is enough to begin doing useful work.
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By intent, eqn does not know very much about typesetting; in
general, it lets troff do as much of the job as possible, including all
character-width computations. In this way, eqn can be relatively
independent of the particular character set, and even of the
typesetter being used.

The basic design decision to make a separate language and pro-
gram distinct from troff does have some drawbacks, because it is not
easy for eqn to make a decision based on the way that troff will pro-
duce the output. The programs are very loosely coupled. Nonethe-
less, these drawbacks seem unimportant compared to the benefits of
having a language that is easily mastered, and a program that is
separate from the main typesetting program. Changes in one pro-
gram generally do not affect the other; both programs are smaller
than they would be if they were combined. And, of course if one
doesn't use eqn, there is no cost, since troff doesn't contain any
code for it.

VI. TBL-A PREPROCESSOR FOR TABLES

Tables also present typographic difficulties. The primary difficulty
is deciding where columns should be placed to accommodate the
range of widths of the various table entries. It is even harder to
arrange for various lines or boxes to be drawn within the table in a
suitable way. tbl8 is a table construction program that is also an
independent preprocessor, quite analogous to eqn.

tbl simplifies entering tabular data, which may be tedious to type
or may be generated by a program, by separating the table format
from its contents. Each table specification contains three parts: a set
of global options affecting the whole table, such as "center" or
"box"; then a set of commands describing the format of each line of
the table; and finally the table data. Each specification describes the
alignment of the fields on a line, so that the description

L R R

indicates a line with three fields, one left adjusted and two right
adjusted. Other kinds of fields are "C" (centered) and "N" (numer-
ical adjustment), with "S" (spanned) used to continue a field across
more than one column. For example,

C S S

L N N

describes a table whose first line is a centered heading spanning
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three columns; the three columns are left-adjusted, numerically
adjusted, and numerically adjusted respectively. If there are more
lines of data than of specifications (the normal case), the last
specification applies to all remaining data lines.

A sample table in the format above might be

Position of Major Cities
Tokyo 35°45' N 139°46' E
New York 40°43' N 74°01' W
London 51°30' N 0°10, W

I Singapore 1°17' N 103°51' E

The input to produce the above table, with tab characters shown by
the symbol OT , is as follows:

.TS

center, box;
C S S

L N N.
Position of Major Cities

Tokyo035°45' N0139°46' E

New YorkO40°43' N074°01' W

LondonO51°30' NO0°10' W

Singapore01 °17' N0103°51' E

.TE

tbl also provides facilities for including blocks of text within a
table. A block of text may contain any normal typesetting com-
mands, and may be adjusted and filled as usual. tbl will arrange for
adequate space to be left for it and will position it correctly. For
example, the table on the next page uses text blocks, line and box
drawing, size and font changes, and the facility for centering vertical
placement of the headings (compare the heading of column 3 with
that of columns 1 and 2). Note that there is no difficulty with equa-
tions in tables. In fact, there is sometimes a choice between writing
a matrix with the matrix commands of eqn or making a table of
equations. Typically, the typist picks whichever program is more
familiar.

The tbl program writes troff code as output, just as eqn does.
This code computes the width of each table entry, decides where to
place the columns and lines separating them, and prints the table.
tbl itself does not understand typesetting: it does not know the
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Functional Systems

Function Function
Number Type Solution

I LINEAR Systems of equations all of which are linear
can be solved by Gaussian elimination.

2 POLYNOMIAL Depending on the initial guess , Newton's

method U,+i=J;- ) will often convergef

on such systems.
3 ALGEBRAIC The program ZONE by J. L. Blue will solve

systems for which an accurate initial guess
is not known.

widths of characters, and may (in the case of equations in tables)
have no knowledge of the height, either. However, it writes troff
output that computes these sizes, and adjusts the table accordingly.
Thus tables can be printed on any device and in any font without
additional work.

Most of the comments about using eqn apply to tbI as well: it is
easy to learn and is in wide use at Bell Laboratories. Since it is a
program separate from troff, it need not be learned, used, or paid
for if no tables are present. Comparatively few users need to know
all of the tools: typically, the workload in one area may be
mathematical, in another area statistical and tabular, and in another
only ordinary text.

VII. OTHER SUPPORTING SOFTWARE

One advantage of doing document preparation in a general-
purpose computing environment instead of with a specialized word
processing system is that programs not directly related to document
preparation may often be used to make the job easier. In this sec-
tion, we discuss some examples from our experience.

One of the most tedious tasks in document preparation is detec-
tion of spelling and typographical errors. Existing data bases origi-
nally obtained for other purposes are used by a program called
spell, which detects potential spelling mistakes. Machine-readable
dictionaries (more precisely, word lists) have been available for
some time. Ours was originally used for testing hyphenation algo-
rithms and for checking voice synthesizer programs. It was realized,
however, that a rudimentary program for detecting spelling mistakes
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could be made simply by comparing each word in a document with
each word in the dictionary; any word in the document but not in
the dictionary is a potential misspelling.

The first program for this approach was developed in a few
minutes by combining existing UNIX utilities for sorting, comparing,
etc. This was sufficiently promising that additional small programs
were written to handle inflected forms like plurals and past partici-
ples. The resulting program was quite useful, for it provided a good
match of computer capabilities to human ones. The machine can
reduce a very large document to a tractable list of suspicious words
that a human can rapidly scan to detect the genuine errors.

Naturally, normal output from spell contains not only legitimate
errors, but a fair amount of technical jargon and some proper
names. The next step is to use that output to refine the dictionary.
In fact, we have carried this step to its logical conclusion, by creat-
ing a brand new dictionary that contains only words culled from doc-
uments. This new dictionary is about one-third the size of the origi-
nal, and produces rather better results.

One of the more interesting peripheral devices supported by the
UNIX system is an inexpensive voice synthesizer.9 The program
speak1° uses this synthesizer to pronounce arbitrary text. Speaking
text has proven especially handy for proofreading tedious data like
lists of numbers: the machine speaks the numbers, while a person
reads a list in parallel.

Another example of a borrowed program is diff,11 which compares
two inputs and prepares a list of all the places in which they differ.
Normally, diff is used for comparing two versions of a program, as a
check on the changes that have been made. But of course it can
also be used on two versions of a document as well. In fact, the diff
output can be captured and used to produce a set of troff commands
that will print the new version with marginal bars indicating the
places where the document has been changed.

We have already mentioned two major preprocessors for troff and
nroff, for mathematics and tables. The same approach, of writing a
separate program instead of cluttering up an existing one, has been
applied to postprocessors as well. Typically, these postprocessors are
concerned with matching troff or nroff output with the characteris-
tics of some different output device. One example is a processor
called col that converts nroff output containing reverse motions
(e.g., multi-column output) into page images suitable for printing on
devices incapable of reverse motion. Another example is a program
that converts troff output intended for a phototypesetter into a form
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suitable for display on the screen of a Tektronix 4014 terminal (or
analogous graphic devices). This permits a view of the formatted
document without actually printing it; this is especially convenient
for checking page layout.

One final area worth mentioning concerns the problem of training
new users. Since there seems to be no substitute for hands-on
experience, a program called learn was written to walk new users
through sets of lessons.12 Lesson scripts are available for funda-
mentals of UNIX file handling commands, the editor ed, and eqn, as
well as for topics not related to document preparation. learn has
been heavily used in the courses taught by secretaries and typists for
their colleagues.

VIII. EXPERIENCE

UNIX document preparation software has now been used for
several years within Bell Laboratories , with many secretaries and
typists in technical organizations routinely preparing technical
memoranda and papers . Several books13 - 19 printed with this
software have been published directly from camera-ready copy.
Technical articles have been prepared in camera-ready form for
periodicals ranging from the Journal of the ACM to Science.

The longest-running use of the UNIX system for document
preparation is in the Bell Laboratories Legal and Patent Division,
where patent applications have been prepared on a UNIX system for
nearly seven years. Computer program documentation has been
produced for several years by clerks using UNIX facilities at the Busi-
ness Information Systems Programs Area of Bell Laboratories.
More recently, the "word processing" centers at Bell Laboratories
have begun significant use of the UNIX system because of its ability
to handle complicated material effectively.

It can be difficult to evaluate the cost -effectiveness of computer-
aided versus manual documentation preparation. We took advan-
tage of the interest of the American Physical Society in the UNIX
system to make a systematic comparison of costs of their traditional
typewriter composition and a UNIX document preparation system.
Five manuscripts submitted to Physical Review Letters were typeset
at Bell Laboratories , using the programs described above to handle
the text , equations , tables, and special layout of the journal.

On the basis of these experiments , it appears that computerized
typesetting of difficult material is substantially cheaper than type-
writer composition . The primary cost of page composition is
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keyboarding, and the aids provided by UNIX software to facilitate
input of complex mathematical and tabular material reduce input
time significantly. Typing and correcting articles on the UNIX sys-
tem, with an experienced typist, was between 1.5 and 3.3 times as
fast as typewriter composition. Over the trial set of manuscripts,
input using the UNIX system was 2.4 times as fast. These documents
were extremely complicated, with many difficult equations. Typists
at Physical Review Letters averaged less than four pages per day;
whereas our (admittedly very proficient) UNIX system typist could
type a page in 30 minutes. We estimate a very substantial saving in
production cost for camera-ready pages using a UNIX system instead
of conventional composition or typewriting. A typical UNIX system
for photocomposition of Physical Review style pages might produce
200 finished pages per day on a capital investment of about
$200,000 and with 20 typists.

The advantage of the UNIX system is greatest when mathematics
and tables abound in a document. For example, it is a great time
saving that keys need never be changed because all equation input is
ordinary text. The automatic page layout saves time when multiple
drafts, versions, or editions of a document are needed. Further
details of this comparison can be found in Ref. 20.

IX. CONCLUSIONS

It is important to note that these document preparation programs
are simply application programs running on a general-purpose sys-
tem. Any document preparation user can exercise any command
whenever desired.

As mentioned above, a surprising number of the programming
utilities are directly or indirectly useful in document preparation.
For example, the program that makes cross-reference listings of
computer programs is largely identical with the one that makes
keyword-in-context indexes of natural language text. It is also easy
to use the programming facilities to generate small utilities, such as
one which checks the consistency of equation usage.

Besides applying programming utilities to text processing, we also
apply document processors to programs and numerical data. Statisti-
cal data are often extracted from program output and inserted into
documents. Computer programs are often printed in papers and
books; because the programs are tested and typeset from the same
source file, transcription errors are eliminated.

In addition to the technical advantages of having programming
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and word processing on the same machine, there can be personnel
advantages. The fact that secretaries and typists work on the same
system as the authors allows both to share the document preparation
job. A document may be typed originally by a secretary, with the
author doing the corrections; in the case of an author who types
rough drafts but doesn't like editing after proofreading, the reverse
may occur. We have observed the full spectrum, from authors who
give hand-written material to typists in the traditional manner to
those who compose at the terminal and do their own typesetting.
Most authors, however, seem to operate somewhere in between.

The UNIX system provides a convenient and cost-effective
environment for document preparation. A first-class program
development facility encourages the development of good tools.
The ability to use preprocessors has enabled us to write separate
languages for mathematics, tables, and several other formatting
tasks. The separate programs are easier to learn than if they were all
jammed into one package, and are vastly easier to maintain as well.
And since all of this takes place within a general-purpose operating
system, programs and data can be used as convenient, whether they
are intended for document preparation or not.
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Several studies of the statistical properties of English text have used the

UNIX* system and UNIX programming tools. This paper describes several

of the useful UNIX facilities for statistical studies and summarizes some

studies that have been made at the character level, the character-string

level, and the level of English words. The descriptions give a sample of

the results obtained and constitute a short introduction , by case-study, on

how to use UNIX tools for studying the statistics of English.

1. INTRODUCTION

The UNIX system is an especially friendly environment in which to
do statistical studies of English text. The file system does not
impose arbitrary limits on what can be done with different kinds of
files and allows tools to be written to apply to files of text, files of
text statistics, etc. Pipes and filters allow small steps of processing
to be combined and recombined to effect very diverse purposes,
almost as English words can be recombined to express very diverse
thoughts. The C language, native to the UNIX system, is especially
convenient for programs which manipulate characters. Finally, an
accidental but important fact is that many UNIX systems are heavily
used for document preparation, thus ensuring the ready availability
of text for practicing techniques and sharpening tools.

This paper gives short reports on several different statistical

* UNIX is a trademark of Bell Laboratories.

2137



projects as examples of the way UNIX tools can be used to gather
statistics describing text. A section describing briefly some of the
more important tools used in all the projects is followed by three
sections dealing with a variety of studies. The studies are divided
according to the level of atomic unit they consider: characters, char-
acter strings, and English words. The order of sections is also in
almost the chronological order of when the projects were done;
future work will almost surely push forward toward more and more
meaningful treatment of English.

II. TOOLS FOR GATHERING STATISTICS

2.1 Word breakout

Throughout this paper, word means a character string. Different
words are made up of different characters or characters in a different
order. For example, man and men are different words; cat and cat's
are different words. We have arbitrarily taken hyphens to be word
delimiters, so that single-minded is two words: single and minded. An
apostrophe occurring within an alphabetic string is part of the word;
an apostrophe before or after a word is not. Digits are discarded.
Upper- and lower-case characters are considered to be identical, so
that The and the are the same word. All these decisions could be
made differently; the authors believe that the events are rare enough
that no substantive conclusions would be changed.

The program that implements the definition of word just given is
prep. It takes a file of text in ordinary form and converts it into a
file containing one word per line. Throughout the rest of this paper,
"word" will mean one line of a prep output file.

Optionally, prep will split out only words on a given list, or all the
words not on a given list:

only option: prep -o list
ignore option: prep -i list

Another option which will be referred to below is the -d option,
which gives the sequence number of each output word in the run-
ning input text.

2.2 Sorting

Central to almost all the examples in the rest of the paper is the
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sort program. sort is implemented as a filter; that is, it takes its
input from the standard input, sorts it, and writes the sorted result
to the standard output. The ability to send sorted output easily to a
terminal, a file, or through another program is essential to make
statistics-gathering convenient. The same sort program works on
either letters or numbers. Among the many other features of the
sort program which are used in the following are the flags:

-n:
-r:
-u:

sort a leading field numerically
sort in reverse order (largest first)
discard duplicate lines

The sorting method used is especially well adapted to the kind of
files dealt with in statistical investigations of text. Its skeleton,
which decides which elements to compare, takes advantage of
repetition of values in the file to be sorted. The algorithm used for
in-core sorting is a version of Quicksort which has been modified to
run faster when values in the input are repeated. The standard ver-
sion of Quicksort requires n log n comparisons, where n is the
number of input items; the UNIX version requires at most n log m
comparisons, where m is the number of distinct input values.

2.3 Counting

Another tool of interest for many statistics-gathering processes is
a program named uniq. Its fundamental action is to take a sorted
file and produce an output containing exactly one instance of each
different line in the file. (This process simply duplicates the action
of sort with the -u option; it runs much more quickly if a sorted file
is already available.) More often useful is its ability to count and
report the number of occurrences of each of the output lines (uniq
-c).

A very generally useful tool is the program wc. It simply counts
the number of lines, words, and characters in a file. Throughout
any investigation of text statistics, the question arises again and
again: How many? Either as a command itself or as the last filter in
a chain of pipes, we is invaluable for answering these questions.

2.4 Searching and pattern-matching

A program of common use for several purposes is grep. grep
searches through a file or files for the occurrence of strings of char-
acters which match a pattern. (The patterns are essentially the same
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as the editor's patterns and, indeed, the etymology of the name is
from the editor command g/r.e./p where r.e. stands for regular
expression.) It will print out all matching lines, or, optionally, a
count of all matching lines. For example,

prep document I grep " ....$" 1 sort I uniq -c >fours

will find all of the four-letter words in document and create a file
named fours which contains each such different word along with its
frequency of occurrence.

sed, the stream editor, is a program which will not only search for
patterns (like grep), but also modify the line before writing it out.
So, for example, the following command (using the file fours
created by the previous example) will print only the four-letter
words which appear exactly once in the document (without the fre-
quency count):

sed -n "s/" *1 //p" fours

This ability to search for a given pattern, but to write out the
selected information in a different format (e. g., without including
the search key), makes sed a useful adhesive to glue together pro-
grams which make slightly different assumptions about the format of
input and output files.

III. CHARACTER LEVEL

Frequency statistics of English text at the character level have
proved useful in the areas of text compression and typographical
error correction.

3.1 Compression

Techniques for text compression capitalize on statistical regularity
of the text to be compressed, or rather its predictability. The statis-
tical text-processing programs on UNIX have found use in the design
and implementation of text-compression routines for a variety of
applications.

Suppose that a file of text has been properly formatted so that it
does not contain unnecessary leading zeros and trailing blanks and
the like, and that it does not devote fixed-length fields to variable-
length quantities. Then the most elementary observation that leads
to reducing the size of the file is that the possible characters of the
character set do not all occur with equal frequency in the text. Most
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text uses ASCII or other 8-bit representation for its characters and
typically one of these eight bits is never used at all, but one can go
much further. If we take as a measure of the information content
of a string of characters

H=J-p, log2p,

where p; is the probability of occurrence of the character x; and the
sum is taken over the whole character set, then it is theoretically
possible to recode the text so that it requires only H bits per charac-
ter for its representation. It is possible to find practical methods
which come close to but do not attain the value of H. Of course, in
deriving this estimate of information content, we have ignored any
regularity of the text which extends over more than one character,
like digram statistics or words.

It is a simple matter to compute the value of H for any file
whether it is a text file or not. The value of H turns out to be very
nearly equal to 4.5 for ordinary technical or non-technical English
text. This leads immediately to the possibility of recoding the text
from ASCII to a variable-length encoding so as to approach a
compression to 56 percent of the original length.

Data files other than English text usually have quite different
statistics from English text. For example, telephone service orders,
parts lists, and telephone directories all have character statistics
which are quite different from those of English and different from
each other . In general , data files have values of H smaller than 4.5;
when they contain a great deal of numerical information, the values
of H are often less than 4.

Programs have been written on UNIX to count the occurrences of
single letters , digrams and trigrams in text. Single-letter frequencies
are kept for all 128 possible ASCII characters. For the digram and tri-
gram statistics, only the 26 letters, the blank, and the newline char-
acters are used, and upper-case letters are mapped to lower case.

The result of running this program on a rather large body of text
is shown in Table I. The input was nine separate documents with a
total of 213,553 characters and 36,237 words. The documents con-
sisted of three of the Federalist Papers, each by a different author,
an article from this journal, a technical paper, a sample from Mark
Twain, and three samples of graded text on different topics.

Some interesting (but not novel) observations about the nature of
English text can be made from these results. At the single-character
level, some characters appear in text far more often than others. In
fact, the 10 most frequent characters constitute 70.6 percent of the
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Table I-English text statistics
Sample character, digram, and trigram counts for a sample of English text. The
counts are truncated after the first 25 entries. 012 is the newline character. q in the
character column is a space character; in the digram and trigram columns, it is any
word separation character.

count character cum. count digram count trigram
33310 q 15.5 6156 eD 3661 q th
21590 e 25.7 5364 q t 3617 the
16080 t 33.2 4998 th 2504 heq
13260 a 39.4 4099 he 1416 q of
12584 o 45.3 3801 q a 1353 ofq
12347 n 51.1 3748 sq 1301 q in
12200 i 56.8 3367 in 1249 and
10997 s 61.9 2780 er 1225 q an
10640 r 66.9 2757 to 1144 ndq
7930 h 70.6 2738 dq 1088 q to
6622 1 73.7 2708 re 1027 too
5929 d 76.5 2666 an 1025 ion
5409 c 79.0 2572 q i 1003 edD
4524 012 81.2 2517 no 946 ing
4508 u 83.3 2506 q o 875 ent
4152 m 85.2 2244 on 854 isq
4080 f 87.1 2047 es 851 inq
3649 p 88.8 2025 at 830 do
3090 g 90.3 1990 en 805 q co
2851 y 91.6 1912 q s 779 reD
2654 w 92.9 1840 yq 747 q aq
2483 b 94.0 1835 ti 734 ngD
1984 94.9 1799 nd 709 onD
1884 v 95.8 1723 nt 702 q be
1824 96.7 1681 to 701 esq

text and the 20 most frequent characters make up 91.6 percent of
the text. At the digram level, of the 784 possible 2-letter combina-
tions, only 70 percent actually occur in the text. More dramatically,
at the trigram level, of the 21952 possible combinations, only 4923,
or 22.4 percent, occur in the text. One implication is that, instead
of the 24 bits used to represent a trigram with an 8-bit character set,
a scheme using 13 bits would do, a compression to 54 percent of the
original length, using only the fact that less than 213 different tri-
grams occur in the text. Noting the widely varying frequencies of
the trigrams in the text, we can obtain a considerably better
compression rate by using a variable-length encoding scheme.

3.2 Spelling error detection

The observation that English text largely consists of a relatively
small proportion of the possible trigrams led to the development of
a program typo which is used to find typographical errors in docu-
ments. A single erroneous keystroke on a typewriter, for example,
changes the three trigrams in which it occurs; more often than not,
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at least one of the erroneous trigrams will be otherwise extremely
rare or nonexistent in English text. The same thing happens in the
case of an erroneously omitted or repeated letter. Better perfor-
mance is obtained when the comparison statistics are taken from the
document itself rather than using some set of trigram statistics from
English text in general.

typo accumulates the digram and trigram frequencies for a docu-
ment and uses them to calculate an index of peculiarity for each
word in the document.1 This index reflects the likelihood that the
trigrams in the word are from the same source as the trigrams in the
document. Words with rare trigrams tend to have higher indexes
and are at the top of the list.

On systems large enough and rich enough to keep a large English
dictionary on line, the same function of finding likely candidates for
spelling correction is performed by a nonstatistical program, spell,
which looks up every word in the dictionary. Of course, suffixes
like -ing and -ed must be recognized and properly stripped before
the lookup can be done. What is more, very large dictionaries per-
form poorly because so many misspelled words turn out to be names
of Chinese coins or obsolete Russian units of distance. Not surpris-
ingly, the statistically based typo requires little storage and runs con-
siderably faster. Moreover, not all systems have such resources, and
typo has proven useful for authors and secretaries in proofreading.
A sample of output from the typo program is included as Table II.

IV. STATISTICS OF CHARACTER STRINGS

In this section we consider statistics which take character strings
as atomic units, without any reference to the string's use or function
as an English word.

4.1 Word -frequency counts

A set of statistics from a text that is frequently collected (often as
a base for further work) is a word-frequency count. A list is made
of all the different words in the text, together with the number of
times each occurs.2 With the UNIX tools, it is quite convenient to
make such a count:

prep text- files I sort I uniq -c

This command line produces a frequency count sorted in
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Table II-Typo output
A portion of the output of the typo program from a 108-page technical document. A
total of 30 misspelled words were found, of which 23 occurred in this portion. The
misspelled words identified by the author of the document upon scanning the list
have been marked by hand.

Apr 12 22:32:11 Possible typo' s and spelling errors Page 1

mr 17 nd
17 heretofore

or 17 erroronously
mr 16 suer

16 seized
mr 16 poiter

16 lengthy
16 inaccessible
16 disagreement

mr 16 bwirte
15 violating
15 unaffected
15 tape
15 swapped
15 shortly

mr 15 mutiliated
15 multiprogramming
15 likewise
15 datum

or 15 dapt

14 flexible
14 flags
14 conceptually

mr 14 bwaite
14 broadly

mr 14 amy
14 adds
14 accompanying
13 overwritten
13 occupying
13 lookup
13 flagged
9 iin
8 subrouutine
8 adjunct
7 drawbacks
6 thee
6 odification
6 od
6 indicator
6 imminent
6 formats
6 cetera
5 zeros
5 virtually
5 ultimately
5 truncate
5 therewith
5 thereafter
5 spectre
5 rewritten
5 raises
5 prefix

mr

or

or

5 pesudonym
5 neames
5 namees
5 multiplied
5 interrelationship
5 inefficient
5 icalc
5 handler
5 flag
5 exercised
5 erroreous
5 dumped
5 dump
5 deficiency
5 controller
5 contiguous
5 changing
5 bottoms
5 bitis
5 ascertain
5 accomodate
4 unnecessarily
4 traversing
4 tracing
4 totally
4 tops
4 thirteen

15 cumulatively
15 consulted
15 consolidation
15 checking
15 accordinng
14 typpical
14 tabular
14 supplying
14 subtle
14 shortcoming
14 pivotal
14 invalid
14 infrequently

or 4 tallyed
4 summarized
4 strictly
4 simultaneous
4 retrieval
4 quotient

alphabetical order, as in Table IIIa. To obtain the count in numeri-
cal order (largest first) :

prep text - files I sort I uniq -c I sort -n -r

This is illustrated in Table IIIb.

4.2 Dictionary compression

A more complex but considerably more profitable approach to text
compression is based on word frequencies. Text consists in large
part of words; these words are easy to find in the text; the total
number of different words in a text is several orders of magnitude
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Table III -Word frequency counts
The beginning of (a) alphabetically sorted and (b) numerically sorted word frequency
counts for an early draft of this paper.

(a) (b)

124 a 321 the
3 ability 212 of
3 about 124 a
3 above 114 in
1 abrupt 105 to
1 abstract 80 is
I accidental 78 and
1 according 65 words
1 accordingly 63 text
1 account 50 for

less than the total possible number of arbitrary character strings of
the same length. The approach can best be visualized by supposing
that a file of text consists entirely of a sequence of English words.
Then we can look up each word in a dictionary and replace each
word in the text by the serial number of the word in the dictionary.
Since a dictionary of reasonable size contains only about 216 words,
we have found an immediate and trivial method to recode English
text so as to occupy 16 bits per word. Since the average length of a
word in text, including the blank after it, is 6 characters, we have a
representation that requires only about 2.7 bits per character. This
implies a compression to 37 percent of original length. Some
details, of course, could not be neglected in actual practice, like cap-
italization, punctuation, and the occurrence of names, abbreviations,
and the like. It turns out, however, that these are sufficiently rare
in ordinary running text that only about two or three extra bits per
word are required, on the average, to handle them and it is possible
to attain a representation requiring only about 3 bits per original

character.
In the case of technical text, it is profitable to find the words from

the text itself, and store them, each word once, in the compressed
file. When this is done, the total number of different words is
rather small and because of the tendency of technical authors to use
a small technical vocabulary very heavily, the performance is very
good. If the dictionary is stored in the file, then the compression
performance depends on the number of times each word is used in
the text. Suppose there is a word in the text which is m characters
long and occurs n times. Then, the occurrences of that word occupy
m x n characters in the original text, whereas in the compressed text,
m characters are used for the one dictionary entry and n x k bits are
used as a dictionary pointer each time the word occurs in the text,
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where k is the logarithm (base 2) of the number of dictionary
entries.

Of course, words in a text do not occur with equal frequency and
it is possible, just as was done with letter statistics, to use a
variable-length encoding scheme for the words. The information
content of the words in a text can be found by passing the word-
frequency count found in the previous section through one more
filter:

prep file-name I sort I uniq -c I entropy

It turns out that, for nontechnical English text, the information con-
tent of the words is between 8 and 9 bits per word when it is
estimated from the text itself. This implies that a text consisting
entirely of a string of English words can generally be compressed to
occupy only about 1.5 bits per original character. Needless to say,
the amount of processing required to compress and expand text in
such a way is usually prohibitively high.

4.3 Specialized vocabulary

A practical application of word-frequency counts arose when col-
leagues became interested in devising vocabulary tests for Bell Sys-
tem personnel to determine their familiarity with the vocabulary
used in Bell System Practices (BSPS) in various areas. It is intui-
tively clear that the vocabulary used in Bell System Practices differs
from the general English vocabulary in several details. Some words,
like the, of, an, etc., are common in the language in general and in
specialized writing; others, like democracy, love, mother would be
found much more frequently in the language in general than in
BSPS; others, like line, circuit, TTY would be more frequent in BSPS
than in the language generally. What was desired was an automatic
procedure which would identify such words without relying on intui-
tion. The general problem proposed was to identify the specialized
vocabulary of a specific field; the immediate interest was in words
with moderate frequencies in BSPS dealing with a certain area, and
which are much less frequent in the language as a whole. It was
hoped that familiarity with such words would indicate familiarity
with the field.

A word-frequency count of approximately one million words of
English text was available. It was made from the text of the Brown
Corpus3 and closely resembles the published frequency count of that
corpus. It differs in detail only because we used prep's definition of
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Table IV- Indexes (see text ) of specialization
Frequency of words in a half-million words of BSPS, frequency in a million words of
general English, and the words for (a) words which occur too often in BSPS relative to
general English; and (b) words which appear too seldom.

Index BSP
(a)
English Word Index

(b)
BSP English Word

Frequency Frequency Frequency Frequency

4362 2585 73 fig -1005 218 2670 their
4150 2334 8 trunk -1008 23 1909 what
3933 2643 233 control -1034 584 3941 have
3541 2216 120 test -1085 4 1961 said
3399 1950 25 circuit -1207 132 2719 would
3277 2326 266 b -1212 18 2252 who
3106 2059 168 equipment -1234 14439 36472 of
3094 1881 76 frame -1356 298 3617 they
2990 1684 7 cable -1395 34 2652 we
2828 1785 104 unit -1457 2 2619 him
2472 1940 315 line -1593 1 2858 she
2445 1367 1 ess -1658 71 3284 were
2418 1479 64 message -1696 0 3037 her
2213 10707 10098 is -1716 2389 10596 that
2190 1316 46 wire -1788 287 4381 but
2133 1892 418 system -1809 10 3285 you
2129 1443 133 list -2096 1439 8768 it
2117 1513 178 data -2502 177 5247 i
2018 2085 612 used -2797 27 5132 had
1936 1118 18 lamp -3839 27 6999 his

a word, which is slightly different from that of Kucera and Francis.
This frequency count was used as representative of English as a
whole.

Also available were approximately a half-million words of BSPS,
from plant, station, and ESS (Electronic Switching System) mainte-
nance areas. Frequency counts were made of these three areas
separately and of the BSP text as a whole.

An index of peculiarity was defined for each word as follows: The
two frequency distributions were considered as a single two-way
classification (source by word), and single-degree-of-freedom X2
statistics were computed for each word. To distinguish words that
appear too frequently in the BSPS from words that appear too sel-
dom, a minus sign was attached to the index when the word
appeared less often than might be expected in the BSPS (with refer-
ence to the English frequency count). This index has the advantage
of automatically taking into account differences in size of the two
frequency counts, and also de-emphasizing moderate differences in
frequency of words which occur rarely in either set of texts.

Samples of the output are shown in Table IV. The indexes and
frequencies are for the entire half million words of BSPS compared
with English. The first word in the table, "fig," does not mean that
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the BSPs discussed tropical fruit to any extent; it is a sample of the
difficulties of defining words as character strings. The word is
prep's version of Fig. (as in "Fig. 22"). The next several words
are, as expected, nouns which refer to objects prominent in
telephony. The occurrence of is more frequently in BSPS than would
be expected seems to be a comment on the style of the writing, one
with many passive constructions and predicate noun or adjective
constructions-a quite abstract style.

The general method for comparing the vocabulary of specialized
texts with general English text worked well for the specific problem
proposed; it allowed our colleagues to choose words for their test
conveniently. It also shows promise as a more generally applicable
method.

4.4 Readability

The number of tokens (N) in a text is the number of running
words; the number of types (T) is the number of different words.
For example, the sentence

The man bit the dog.

contains five tokens, and only four types: the, man, bit, dog. For our
purposes, the number of tokens in a file is taken to be the number
of words in the output file of the prep command. We will call a
type which occurs exactly once in a text a hapax, from the Greek
hapax legomenon, meaning occurring only once. The number of
hapaxes in a text is H.

Two summary statistics often calculated from word-frequency
counts are the type/token ratio TIN and the hapax/type ratio HIT
The TIN ratio gives the average repetition rate for words in a text;
its usefulness is limited by its erratic decrease with increasing N.
The HIT ratio also varies with N, but more slowly and less errati-
cally. We have found it to be of interest in investigations of read-
ability.

Readability is an index which is calculated from various statistics
of a text, and is intended to vary inversely with the difficulty of the
text for reading. Several such indexes have been proposed; none is
universally satisfactory (see, for example, Ref. 4).

In the following discussion, the text used to measure the
effectiveness of proposed indexes of readability is taken from an
extensive study by Bormuth.4 He gathered passages from published
works in several different fields, which were intended by the
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publisher to be appropriate for reading by students at various grade
levels. He carefully graded the difficulty of each text by an indepen-
dent psychological criterion and calculated an index of difficulty
from the results of the psychological tests. To judge the
effectiveness of indexes calculated from the statistics of the texts
themselves, we used two criteria: Bormuth's psychological index and
the publishers' assignment of the text to grade level. (The publish-
ers' assignment is in general not based on empirical tests, but on
considerable experience and art. It correlates well with Bormuth's
empirical measures; we use it simply as a check on oddities that
might arise from the specific nature of Bormuth's index.)

One factor which, intuitively, makes some text more difficult to
read than other is the speed with which new ideas are introduced. A
passage which deals with several ideas in a few words tends to be
more difficult to comprehend than a passage of the same length
which spends more time developing a single idea. The computer,
which of course does not understand the text, cannot measure the
number of ideas in a passage. But several statistics regarding the
number of different words used, and the number of times they are
repeated, might plausibly be expected to vary with the number of
ideas in a passage.

Of the statistics related to the breadth of vocabulary in a passage,
the HIT ratio was found to correlate best with Bormuth's empirical
measure of readability. Over twenty 275-word passages, the correla-
tion is -0.79 with Bormuth's index, 0.77 with grade placement.
This correlation is high for a single statistic with an empirical meas-
ure of readability, and the correlation remains whether or not the
rationale given above is convincing for why there should be a corre-
lation.

We return to readability in the last section of this paper.

4.5 Dispersion of words

A final example of statistics based on words purely as character
strings concerns the dispersion of words in text. When an author
writes a passage, it is plausible to believe that he has an over-all
topic, which unites the passage as a whole. As he proceeds, how-
ever, he attends to first one aspect of the topic, then another. It
might be expected that as he concentrates on one aspect he would
use words from one part of his vocabulary, and when he shifts to
another aspect, the vocabulary would also change somewhat. (See
Ref. 5, pp. 22-35.) This tendency might be measured by observing
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Table V-Separation between words
Mean and standard deviation for the separation (as fractions of the document)
between words that occurred exactly twice in documents. N is the number of words
on which the mean and S.D. are based. The 275 word entries are averages for 4 pas-
sages from different sources; the mixed entries are for a concatenation of the four
passages; matched entries are for a continuous 1,200-word passage; expected entries
are on the hypothesis of random placement of words.

N Mean S. D.

275 word 21 0.26 0.20
mixed 62 0.15 0.16
matched 62 0.32 0.23
expected 0.33 0.24

the distance between repeated occurrences of words. If the ten-
dency to change vocabulary is strong, repeated instances of the same
word would be closer together than when the topic and therefore the
vocabulary is uniform over an entire passage. In any case, since an
English text is presumably an organized sequence of words, the
dispersion of words should be less than would be expected for a ran-
dom placement of the words in a passage.

To gather statistics on the dispersion of words, an option of prep
will write the sequence number of each word (in the input stream)
on the same line as the word. By using this option together with the
-o (only) option, the position in the input text of each occurrence of
each word that appears twice, three times, etc. can be written into a
file. This file, sorted on the word field, provides input to a simple
special-purpose program to calculate the distances between repeated
occurrences of the same word. The entire process required writing
only one very simple special-purpose program to find the differences
between sets of numbers in a file.

Sample results to illustrate the behavior of the statistic are
displayed in Table V. The observed and expected means and stan-
dard deviations for the separation of words that occurred exactly
twice in a text are given as fractions of the length of the text. (The
expected fractions are calculated on the hypothesis of random place-
ment of the words in the text.) The line labeled 275 word gives the
average statistics for four passages of about 275 words each, drawn
from different biology texts, each on a separate topic. The mixed
line is statistics from the concatenation of the four texts; the
matched line gives statistics from a text of the same length as the
concatenation, but drawn from a continuous, coherent text. The
expected line gives the expected separations on the hypothesis of
random placement of the words in the text.

As can be seen in Table V, the mean dispersion behaves as
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expected; it is smaller than random placement for all texts, but
larger for coherent texts than for samples constructed to have abrupt
changes of topic. The large standard deviation relative to the mean
makes it a difficult statistic to work with, but it shows promise as a
measure of uniformity of topic in a passage.

V. ENGLISH WORDS

In this section, we go a short step beyond the character-string
orientation of the last section and consider different functional uses
of our character strings as English words. Words will still be defined
by prep as character strings separated by space or punctuation, but
we attend to the way these character strings are used as English
words.

5.1 Readability revisited

In the previous section, we considered the correlation of a statistic
based on breadth of vocabulary with readability. Another way in
which English text can become difficult to read is for an author to
use long, complicated constructions which require the reader to fol-
low tortuously through the maze of what is a single sentence, and,
therefore, presumably a single thought. (The preceding sentence is
offered as a rather modest example of its own referent.) English
sentences become long and complicated usually by use of connective
words like prepositions (of, from, to, etc.) and conjunctions (and,
when, if, although, etc.). Therefore, a list was drawn up of connec-
tive words (prepositions and conjunctions), and another list of other
function words (auxiliary verbs, articles, demonstratives, etc.).
Using prep -o through wc, the number of connectives and the
number of other function words in each of twenty graded passages4
were counted. As expected, reading difficulty as measured both by
Bormuth's psychological index and by publishers' grade placement
was correlated with both indexes. Number of connectives per token
was correlated -0.72 with Bormuth's index score; 0.69 with grade
placement. Number of other function words per token was corre-
lated 0.57 with Bormuth's index; -0.50 with grade placement.

The two best predictors considered, HIT ratio and density of con-
nective words, are, alas, highly correlated with each other, so that
the multiple correlation of the two predictors is only 0.80 with
Bormuth's index and 0.78 with grade placement. This finding that
predictors of readability are highly correlated among themselves is
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ensured that a large body of text is always at hand for practicing and
sharpening tools.
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The development of new programs on the UNIX* system is facilitated by
tools for language design and implementation. These are frequently pro-
gram generators, compiling into C, which provide advanced algorithms in
a convenient form, while not restraining the user to a preconceived set of
jobs. Two of the most important such tools are Yacc, a generator of
LALR(1) parsers, and Lex, a generator of regular expression recognizers
using deterministic finite automata. They have been used in a wide
variety of applications, including compilers, desk calculators, typesetting
languages, and pattern processors.

1. INTRODUCTION

On the UNIX system, an effort has been made to package language
development aids for general use, so that all users can share the
newest tools. As a result, these tools have been used to design
pleasant, structured applications languages, as well as in their more
traditional roles in compiler construction. The packaging is crucial,
since if the underlying algorithms are not well packaged, the tools
will not be used; applications programmers will rarely spend weeks
learning theory in order to use a tool.

Traditionally, algorithms have been packaged as system commands
(such as sort), subroutines (such as sin), or as part of the sup-
ported features of a compiler or higher level language environment

* UNIX is a trademark of Bell Laboratories.
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(such as the heap allocation in Algol 68). Another way of packag-
ing, which is particularly appropriate in the UNIX operating system, is
as a program generator. Program generators take a specification of a
task and write a program which performs that task. The program-
ming language in which this program is generated (called the host
language) may be high or low level, although most of ours are high
level. Unlike compilers, which typically implement an entire
general-purpose source language, program generators can restrict
themselves to doing one job, but doing it well.

Program generators have been used for some time in business
data processing, typically to implement sorting and report generation
applications. Usually, the specifications used in these applications
describe the entire job to be done, and the fact that a program is
generated is important, but really only one feature of the implemen-
tation of the applications package. In contrast, our program genera-
tors might better be termed module generators; the intent is to pro-
vide a single module that does an important part of the total job.
The host language, augmented perhaps by other generators, can pro-
vide the other features needed in the application. This approach
gains many of the advantages of modularity, as well as the advan-
tages which the advanced algorithms provide. In particular:

(i) Each generator handles only one job, and thus is easier to
write and to keep up to date.

(ii) The user can select exactly the tools needed; one is not forced
to accept many unwanted features in order to get the one
desired.

(iii) The user can also select what manuals have to be read; not
only is an unused tool not paid for, but it also need not be
learned.

(iv) Portability can be enhanced, since only the host language
compiler must know the object machine code.

(v) Since the interfaces between the tools are well-defined and the
output of the tools is in human-readable form, it is easy to
make independent changes to the tools and to determine the
source of difficulty when a combination of tools fails to work.

Obviously, this all depends on the specific tools fitting together well,
so that several can be used in a job. On the UNIX system, this is
achieved in a variety of ways. One is the use of .filters, programs
that read one input stream and write one output stream. Filters are
easy to fit together; they are simply connected end to end. On the
UNIX system, the command line syntax makes it easy to specify a
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SPECIFICATION -► GENERATOR SOURCE

SOURCE -► HOST COMPILER -► EXECUTABLE OBJECT

DATA --- 11. EXECUTABLE OBJECT OUTPUT

Fig. 1-Program generator.

sequence of commands, each of which uses as its input the output
of the preceding command. An example appears in typesetting:

refer source- files I tbl I eqn I troff ...

where refer processes the references, tbl the tables, eqn the equa-
tions, and finally troff the text.1 Each of the first three programs is
really a program generator writing code in the host language troff,
which in turn produces "object code" in the form of typesetter
device commands.

This paper focuses on Yacc and Lex. A detailed description of
the underlying theory of both programs can be found in Aho and
Ullman's book,2 while the appropriate users' manual can be con-
sulted for further examples and details.3, 4

Since program generators have output which is in turn input to a
compiler and the compiler output is a program which in turn may
have both input and output, some terminology is essential. To clar-
ify the discussion, throughout this paper the term specification will

be used to refer to the input of Yacc or Lex. The output program
generated then becomes the source, which is compiled by the host

language compiler. The resulting executable object program may

then read data and produce output. To use a generator:

(i) The user writes a specification for the generator, containing
grammar rules (for Yacc) or regular expressions (for Lex).

(ii) The specification is fed through the generator to produce a
source code file.

(iii) The source code is processed by the compiler to produce an
executable file.

(iii) The user's real data is processed by the executable file to pro-
duce the real output.

This can be diagrammed as shown in Fig. 1. Both Yacc and Lex
accept both C and Ratfor5 as host languages, although C is far more

widely used.
The remainder of this paper gives more detail on the two main

program generators, Yacc in Section II and Lex in Section III.
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Section IV describes an example of the combined use of both gen-
erators to do a simple job, reading a date (month, day, year) and
producing the day of the week on which it falls. Finally, Section V
contains more general comments about program generators and host
languages.

II. THE YACC PARSER GENERATOR

Yacc is a tool which turns a wide class of context-free grammars
(also known as Backus -Naur Form , or BNF, descriptions) into
parsers that accept the language specified by the grammar . A simple
example of such a description might look like

date : month day year ;

month: "Jan" I "Feb" "Mar"
"Apr" I "May" I "Jun"
"Jul" I "Aug" I "Sep"
"Oct" ^ "Nov" "Dec"

day: number

year: "," number

number: DIGIT I
number DIGIT

In words, this says that a date is a month, day, and year, in that
order; in the Yacc style of writing BNF, colons and semicolons are
syntactic connectives that aren't really included in the actual descrip-
tion. The vertical bar stands for "or," so a month is Jan or Feb,
and so on. Quoted strings can stand for literal appearances of the
quoted characters. A day is just a number (discussed below). A
year is either a comma followed by a number, or it can in fact be
missing entirely. Thus, this example would allow as a date either Jul
4, 1776, or Jul 4.

The two rules for number say that a number is either a single
digit, or a number followed by a digit. Thus, in this formulation,
the number 123 is made up of the number 12, followed by the digit
3; the number 12 is made up of the number 1 followed by the digit
2; and the number 1 is made up simply of the digit 1.

Using Yacc, an action can be associated with each of the BNF
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rules, to be performed upon recognizing that rule. The actions can
be any arbitrary program fragments. In general, some value or
meaning is associated with the components of the rule and part of
the job of the action for a rule is to compute the value or meaning
to be associated with the left side of the current rule. Thus, a
mechanism has been provided for these program fragments to
obtain the values of the components of the rule and return a value.

Using the number example above, suppose a value has been associ-
ated with each possible DIGIT; the value of I is 1, etc. The rules
describing the structure of numbers can be followed by associated
program fragments which compute the meaning or value of the
numbers. Assuming that numbers are decimal, then the value of a
number which is a single digit is just the value of the digit, while the
value of a number which is a number followed by a digit is 10 times
the value of the number, plus the value of the digit. In order to
specify the values of numbers, we can write:

number : DIGIT
($$=$1;

number DIGIT
( $$ = 10 * $1 + $2; }

Notice that the values of the components of the right-hand sides of
the rule are described by the pseudo-variables $1, $2, etc. which
refer to the first, second, etc. elements of the right side of the rule.
A value is returned for the rule by assigning to the pseudo-variable
$$. After writing the above actions, the other rules which use
number will be able to access the value of the number.

Recall that the values for the digits were assumed known. In
practice, BNF is rarely used to describe the complete structure of the
input. Usually a previous stage, the lexical analyzer, is responsible
for actually reading the input characters and assembling them into
tokens, the basic input units for the BNF specification. Lex,
described in the next section, is used to help build lexical analyzers;
among the issues usually dealt with in the Lex specification are the
assembly of alphabetic characters into names, the recognition of
classes of characters (such as DIGITS), and the treatment of blanks,
newlines, comments, and other similar issues. In particular, the lex-
ical analyzer will be able to associate values to the tokens which it
represents, and these values will be accessible in the BNF
specification.

The programs generated by Yacc, called parsers, read the input
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data and associate the rules and actions of the BNF to this input, or
report an error if there is no correct association . If the above BNF
example is given to Yacc, together with an appropriate lexical
analyzer, it will produce a program that will read dates and only
dates, report error if something is read that does not fit the BNF
description of a date, and associate the correct actions, values, or
meanings to the structures encountered during input.

Thus, parsing is like listening to prose; programmers say, "I've
never parsed a thing!" but, in fact, every Fortran READ statement
does parsing. Fortran FORMAT statements are simply parser
specifications. BNF is very powerful, however, and, what is impor-
tant in practice, many BNF specifications can be turned automatically
into fast parsers with good error detection properties.

Yacc provides a number of facilities that go beyond BNF in the
strict sense. For example, there is a mechanism which permits the
user some control over the behavior of the parser when an error is
encountered. Theoretically, one may be justified in terminating the
processing when the data are discovered to be in error, but, in prac-
tice, this is unduly hostile, since it leads to the detection of only one
error per run. To use such a parser to accept input interactively is
totally unacceptable; one often wants to prompt the naive user if
input is in error, and encourage correct input. The Yacc facilities
for error recovery are used by including additional rules, in addition
to those which specify the correct input. These rules may use the
special token error. When an error is detected, the parser will
attempt to recover by behaving as if it had just seen the special error
token immediately before the token which triggered the error. It
looks for the "nearest" rule (in a precise sense) for which the error
token is legal, and resumes processing at this rule. In general, it is
also necessary to skip over a part of the input in order to resume
processing at an appropriate place; this can also be specified in the
error rule. This mechanism, while somewhat unintuitive and not
completely general, has proved to be powerful and inexpensive to
implement. As an example, consider a language in which every
statement ends with a semicolon. A reasonable error recovery rule
might be

statement : error ';'

which, when added to the specification file, would cause the parser
to advance the input to the next semicolon when an error was
encountered, and then perform any action associated with this rule.
One of the trickiest areas of error recovery is the semantic recovery:
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how to repair partially built symbol table entries and expression trees
that may be left after an error, for example. This problem is
difficult and depends strongly on the particular application.

Yacc provides another very useful facility for specifying arithmetic
expressions. In most programming languages , there may be a
number of arithmetic operators, such as +, -, /, etc. These typi-
cally have an ordering, or precedence, associated with them. As an
example, the expression

a + b * c

is typically taken to mean

a + (b • c )

because the multiplication operator (*) is of higher precedence or
binding power than the addition operator (+). In pure BNF,
specification of precedence levels is somewhat indirect and requires
a technical trick which, while easy to learn, is nevertheless unintui-
tive. Yacc provides the ability to write simple rules that specify the
parsing of arithmetic expressions except for precedence, and then
supply the precedence information about the operators separately.
In addition, the left or right associativity can be specified. For
example, the sequence

%left '+' '-'

%left '•' 7

indicates that addition and subtraction are of lower precedence than
multiplication and division, and that all are left associative operators.
This facility has been very successful; it is not only easier for the
nonspecialist to use, but actually produces faster, smaller parsers.6' 7

Yacc provides a case history of the packaging of a piece of theory
in a useful and effective way. For one thing, while BNF is very
powerful it does not do everything. It is important to permit escapes
from BNF, to permit real applications that can take advantage of the
power of BNF, while having some relief from its restrictions. Allow-
ing a general lexical analyzer and general C programs as actions
serves this purpose in Yacc. This in turn is made possible by the
packaging of the theory as a program generator; the Yacc system
does not have to make available to the user all facilities for lexical
analysis and actions, but can restrict itself to building fast parsers,
and let these other issues be taken care of by other modules.

It is also possible to enclose the Yacc-generated parser in a larger
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program. Yacc translates the user's specification into a program
named yyparse. This program behaves like a finite automaton that
recognizes the user's grammar; it is represented by a set of tables
and an interpreter to process them. If the user does not supply an
explicit main program, yyparse is invoked and it reads and parses
the input sequence delivered by the lexical analyzer. If the user
wishes, however, a main program can be supplied to perform any
desired actions before or after calling the parser, and the parser may
be invoked repeatedly. The function value returned by yyparse
indicates whether or not a legal sentence in the specified language
was recognized.

It is also possible for the user to introduce his own code at a lower
level, since the Yacc parser depends on a routine yylex for its input
and lexical analysis. This subroutine may be written with Lex (see
the next section) or directly by the user. In either case, each time it
is called it must return a lexical token name to the Yacc parser. It
can also assign a value to the current token by assigning to the vari-
able yylval. Such values are used in the same way as values
assigned to the $$ variables in parsing actions.

Thus the user's code may be placed (i) above the parser, in the
main program; (ii) in the parser, as action statements on rules;
and/or (iii) below the parser, in the lexical analyzer. All of these
are in the same core load, so they may communicate through exter-
nal variables as desired. This gives even the fussiest programmers
enough rope to hang themselves. Note,. however, that despite the
presence of user code even within the parser, both the finite auto-
maton tables and the interpreter are entirely under the control of,
and generated by, Yacc, so that changes in the automaton represen-
tation need not affect the user.

In addition to generality, good packaging demands that tools be
easy to use, inexpensive, and produce high quality output. Over the
years, Yacc has developed increased speed and greater power, with
little negative effect on the user community. The time required for
Yacc to process most specifications is faster than the time required
to compile the resulting C programs. The parsers are also compar-
able in space and time with those that may be produced by hand,
but are typically very much easier to write and modify.

To summarize, Yacc provides a tool for turning a wide class of
BNF descriptions into efficient parsers. It provides facilities for error
recovery, specification of operator precedence, and a general action
facility. It is packaged as a program generator, and requires a lexical
analyzer to be supplied. The next section will discuss a
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complementary tool, Lex, which builds lexical analyzers suitable for
Yacc, and is also useful for many other functions.

III. THE LEX LEXICAL ANALYZER GENERATOR

Lex is similar in spirit to Yacc, and there are many similarities in
its input format as well. Like Yacc, Lex input consists of rules and
associated actions. Like Yacc, when a rule is recognized, the action
is performed. The major differences arise from the typical input
data and the model used to process them. Yacc is prepared to
recognize BNF rules on input which is made up of tokens. These
tokens may represent several input characters, such as names or
numbers, and there may be characters in the input text that are
never seen by the BNF description (such as blanks). Programs gen-
erated by Lex, on the other hand, are designed to read the input
characters directly. The model implemented by Lex is more power-
ful than Yacc at dealing with local information - context, character
classes, and repetition - but is almost totally lacking in more global
structuring facilities, such as recursion. The basic model is that of
the theory of regular expressions, which also underlies the UNIX text
editor ed and a number of other UNIX programs that process text.
The class of rules is chosen so that Lex can generate a program that
is a deterministic finite state automaton; this means that the result-
ing analyzer is quite fast, even for large sets of regular expressions.
The program fragments written by the user are executed in the
order in which the corresponding regular expressions are matched in
the input stream.

The lexical analysis programs written with Lex accept ambiguous
specifications and choose the longest match possible at each input
point. If necessary, substantial look-ahead is performed on the
input, but the input stream will be backed up to the end of the final
string matched, making this look-ahead invisible to the user.

For a trivial example, consider the specification for a program to
delete from the input text all appearances of the word theoretical.

%%
theoretical

This specification contains a %% delimiter to mark the beginning of
the rules, and one rule. This rule contains a regular expression
which matches precisely the string of characters "theoretical." No
action is specified, so when these characters are seen, they are
ignored. All characters which are not matched by some rule are
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copied to the output, so all the rest of the text is copied. To also
change theory to practice, just add another rule:

%%
theoretical
theory printf( "practice" );

The finite automaton generated for this source will scan for both
rules at once, and, when a match is found, execute the desired rule
action.

Lex-generated programs can handle data that may require substan-
tial lookahead. For example, suppose there were a third rule,
matching the, and the input data was the text string theoretician.
The automaton generated by Lex would have to read the initial
string theoretici before realizing that the input will not match
theoretical. It then backs up the input, matching the, and leaving
the input poised to read oretician. Such backup is more costly than
the processing of simpler specifications.

As with Yacc, Lex actions may be general program fragments.
Since the input is believed to be text, a character array (called
yytext) can be used to hold the string which was matched by the
rule. Actions can obtain the actual characters matched by accessing
this array.

The structure of Lex output is similar to that of Yacc. A function
named yylex is produced, which contains tables and an interpreter
representing a deterministic finite automaton. By default, yylex is
invoked from the main program, and it reads characters from the
standard input. The user may provide his own main program, how-
ever. Alternatively, when Yacc is used, it automatically generates
calls to yylex to obtain input tokens. In this case, each Lex rule
which recognizes a token should have as an action

return ( token-number )

to signal the kind of token recognized to the parser. It may also
assign a value to yylval if desired.

The user can also change the Lex input routines, so long as it is
remembered that Lex expects to be able to look ahead on and then
back up the input stream. Thus, as with Yacc, user code may be
above, within, and below the Lex automaton. It is even easy to
have a lexical analyzer in which some tokens are recognized by the
automaton and some by user-written code. This may be necessary
when some input structure is not easily specified by even the large
class of regular expressions supported by Lex.
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The definitions of regular expressions are very similar to those in
qed8 and the UNIX text editor ed.9 A regular expression specifies a
set of strings to be matched. It contains text characters (which
match the corresponding characters in the strings being compared)
and operator characters (which specify repetitions, choices, and
other features). The letters of the alphabet and the digits are always
text characters; thus the regular expression

integer

matches the string integer wherever it appears and the expression

a57D

looks for the string a57D. It is also possible to use the standard C
language escapes to refer to certain special characters, such as \n for
newline and \t for tab. The operators may be used to:

(i) Specify a repetition of 0 or more, or 1 or more repetitions of
a regular expression: * and +.

(ii) Specify that an expression is optional: ?.
(iii) Allow a choice of two or more patterns: I.
(iv) Match the beginning or the end of a line of text: ^ and $.
(v) Match any non-newline character: . (dot).
(vi) Group sub-expressions: ( and ).
(vii) Allow escaping and quoting special characters: \ and
(viii) Define classes of characters: [ and 1.
(ix) Access defined patterns: { and }.
(x) Specify additional right context: /.

Some simple examples are

[0-91

which recognizes the individual digits from 0 through 9,

[0-91+

which recognizes strings of one or more digits, and

-?[0-91+

which recognizes strings of digits optionally preceded by a minus
sign . A more complicated pattern is

[A-Za-z][A-Za-z0-9]•

which matches all alphanumeric strings with a leading alphabetic
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character. This is a typical expression for recognizing identifiers in
computer programming languages.

Lex programs go beyond the pure theory of regular expressions in
their ability to recognize patterns. As one example, Lex rules can
recognize a small amount of surrounding context. The two simplest
operators for this are " and $. If the first character of an expression
is ", the expression will only be matched at the beginning of a line
(after a newline character, or at the beginning of the input stream).
If the very last character is $, the expression will only be matched at
the end of a line (when immediately followed by a newline). The
latter operator is a special case of the / operator, which indicates
trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Left context is
handled in Lex by start conditions. In effect, start conditions can be
used to selectively enable or disable sets of rules, depending on
what has come before.

Another feature of Lex is the ability to handle ambiguous
specifications. When more than one expression can match the
current input, Lex chooses as follows:

(i) The longest match is preferred.
(ii) Among rules which matched the same number of characters,

the rule given first is preferred.

Thus, suppose the rules

integer keyword action ...,
[a-z] + identifier action ...

to be given in that order. If the input is integers, it is taken as an
identifier, because [a-z]+ matches 8 characters while integer
matches only 7. If the input is integer, both rules match 7 charac-
ters, and the keyword rule is selected because it was given first.
Anything shorter (e.g., int) will not match the expression integer
and so the identifier interpretation is used.

Note that a Lex program normally partitions the input stream,
rather than search for all possible matches of each expression. This
means that each character is accounted for once and only once.
Sometimes the user would like to override this choice. The action
REJECT means "go do the next alternative." It causes to be executed
whatever rule was next choice after the current rule. The position
of the input pointer is adjusted accordingly. In general, REJECT is
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Fig. 2-Yacc and Lex cooperating.

useful whenever the purpose of a Lex program is not to partition
the input stream but to detect all examples of some items in the
input, and the instances of these items may overlap or include each
other.

IV. COOPERATION OF YACC AND LEX: AN EXAMPLE

This section gives an example of the cooperation of Yacc and Lex
to do a simple program which, nevertheless, would be difficult to
write directly in many high-level languages. Before the specific
example, however, let us summarize the various mechanisms avail-
able for making Lex- and Yacc-generated programs cooperate.

Since Yacc generates parsers and Lex can be used to make lexical
analyzers, it is often desirable to use them together to make the first
stage of a language analyzer. In such an application, two
specifications are needed: a set of lexical rules to define the input
data tokens and a set of grammar rules to define how these tokens
may appear in the language. The input data text is read, divided up
into tokens by the lexical analyzer, and then passed to the parser
and organized into the larger structures of the input language. In
principle, this could be done with pipes, but usually the code pro-
duced by Lex and Yacc are compiled together to produce one pro-
gram for execution. Conventionally, the Yacc program is named
yyparse and it calls a program named yylex to obtain tokens, there-
fore, this is the name used by Lex for its output source program.
The overall appearance is shown in Fig. 2.

To make this cooperation work, it is necessary for Yacc and Lex
to agree on the numeric codes used to differentiate token types.
These codes can be specified by the user, but ordinarily the user
allows Yacc to choose these numbers, and Lex obtains the values by
including a header file, written by Yacc, which contains the
definitions. It is also necessary to provide a mechanism by which
Yacc can obtain the values of tokens returned from Lex. These
values are passed through the external variable yylval.

Yacc and Lex were designed to work together, and are frequently
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used together. The programs using this technology include the port-
able C compiler and the C language preprocessor.

As a simple example, we shall specify a complete program which
will allow the input of dates, such as

July 4, 1776

and it will output the days of the week on which they fall. The pro-
gram will also permit dates to be input as three numbers, separated
by slashes:

7/4/1776

and in European format:

4 July 1776

Moreover, the month names can be given by their common abbrevi-
ations (with an optional `.' following ) or spelled in full, but nothing
in between.

Conceptually , there are three parts of the program . The Yacc
specification describes a list of dates , one per line , in terms of the
two tokens DIGIT and MONTH , and various punctuation symbols such
as comma and newline. The Lex specification recognizes MONTHS
and DIGITS, deletes blanks, and passes other characters through to
Yacc. Finally, the Yacc actions call a set of routines which actually
carry out the day of the week computation . We will discuss each of
these in turn.

%token DIGIT MONTH

input : /• empty file is legal ►/
input date '\n'
input error '\n'

( yyerrok; /• ignore line

MONTH day ',' year
( date( $1, $2, $4 ); }

day MONTH year

( date( $2, $1, $4 ); )
number '/' number '/' number

( date( $1, $3, $5 ); }

day number

if error
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year : number

number DIGIT
number DIGIT

t $$ = 10 - $1 + $2; }

The Yacc specification file is quite simple. The first line declares the
two names DIGIT and MONTH as tokens, whose meaning is to be sup-
plied by the lexical analyzer. The %% mark separates the declara-
tions from the rules. The input is described as either empty or
some input followed by a date and a newline. Another rule specifies
error recovery action in case a line is entered with an illegally
formed date; the parser is to skip to the end of the line and then
behave as if the error had never been seen.

Dates are legal in the three forms discussed above. In each case,
the effect is to call the routine date, which does the work required
to actually figure out the day of the week. The syntactic categories
day and year are simply numbers; the routine date checks them to
ensure that they are in the proper range. Finally, numbers are
either DIGITs or a number followed by a DIGIT. In the latter case, an
action is supplied to return the decimal value of the number. In the
case of the first rule, the action

}( $$ = $1;

is the implied default, and need not be specified.
Note that the Yacc specification assumes that the lexical analyzer

returns values 0 through 9 for the DIGITS, and a month number from
1 to 12 for the MONTHS.

We turn now to the Lex specification.

# include "y . tab.h"
extern int yylval;
# define MON(x) (yylval = x; return (MONTH);)

Jan("."Iuary)? MON(1);

Feb("."Iruary)? MON(2);

Mar(" lch)? MON(3);

Apr("." (iI)? MON(4);

May MON(5);
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Jun("." Ie)? MON(6);

Jul("."Iy)? MON(7);

Aug("." lust)? MON(8);

Sep("." I"t" I"t." Itember)? MON(9);

Oct("." lober)? MON(10);

Nov("." Iember)? MONO 1);

Dec("." I ember) ? MON (12) ;

[0-9] ( yylval = yytext[0] '0';

return ( DIGIT ); }

[ ] ( /* delete blanks •/ }

{ return ( yytext[0] ); /* return

single characters */ )

The Lex specification includes the file y.tab.h which is produced by
Yacc; this defines the token names DIGIT and NUMBER, so they can
be used by the Lex program. The variable yylval is defined, which
is used to communicate the values of the tokens to Yacc. Finally, to
make it easier to return the values of MONTHS the macro MON is
defined which assigns its argument to yylval and returns MONTH.

The next portion of the Lex specification is concerned with the
month names. Typically, the full month name is legal, as well as
the three-letter abbreviation, with or without a following period.
The action when a month name is recognized is to set yylval to the
number of the month, and return the token indication MONTH; this
tells Yacc that a MONTH has been seen. Similarly, the digits 0
through 9 are recognized as a character class, their value stored into
yylval, and the indication DIGIT returned. The remaining rules serve
to delete blanks, and to pass all other characters, including newline,
to Yacc for further processing.

Finally, for completeness, we present the subroutine date which
actually carries out the computation. A good fraction of the logic is
concerned with leap years, in particular the rather baroque rule that
a year is a leap year if it is exactly divisible by 4, and not exactly
divisible by 100 unless it is also divisible by 400. Notice also that
the month and day are checked to ensure that they are in range.

I. here are the routines that really do the work */
# include <stdio.h>
int noleap [] {
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0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,

int leap[] {
0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
};

char * dayname[]
"Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",

date( month , day, year ){ I. this routine does the real work •/
int •daysin;
daysin = isleap( year ) ? leap : noleap;
/* check the month •/
if( month < 1 11 month > 12)1

printf( "month out of range\n" );
return;
}

/+ check the day of the month •/
if( day < 1 fl day > daysin [ month] )

printf( "day of month out of range\n" );
return;
}

/• now, take the day of the month,
add the days of previous months •/
while( month > 1 ) day += daysin [ -- month ];
I. now, make day ( mod 7 ) offset from Jan 1, 0000 ► /
if( year > 0 )(

--year; /* make corrections for previous years •/
day += year ; /• since 365 = 1 (mod 7)
/• leap year correction */
day += year/4 - year/100 + year/400;
}

I. Jan 1, 0000 was a Sunday , so no correction needed
printf( " %s\n", dayname [day%7] );

isleap ( year )
if( year % 4 != 0 ) return ( 0 ); /* not a leap year
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if( year % 100 != 0 return( 1 ); /= is a leap year */
if( year % 400 != 0 return( 0 ); /* not a leap year
return( 1 ); /• a leap year •/
}

Some of the Lex specification (such as the optional period after
month names) might have been done in Yacc. Notice also that
some of the things done in Yacc (such as the recognition of
numbers) might have been done in Lex. Moreover, additional
checking (such as ensuring that days of the month have only one or
two digits) might have been placed into Yacc. In general, there is
considerable flexibility in dividing the work between Yacc, Lex, and
the action programs.

As an exercise, the reader might consider how this program might
be written in his favorite programming language. Notice that the
Lex program takes care of looking ahead on the input stream, and
remembering characters that may delimit tokens but not be part of
them. The Yacc program arranges to specify alternative forms and
is clearly easy to expand. In fact, this example uses none of the pre-
cedence and little of the powerful recursive features of Yacc.
Finally, languages such as Snobol in which one might reasonably do
the same things as Yacc and Lex do, for this example, would be
very unpleasant to write the date function in. Practical applications
of both Yacc and Lex frequently run to hundreds of rules in the
specifications.

V. CONCLUSIONS

Yacc and Lex are quite specialized tools by comparison with some
"compiler-writing" systems. To us this is an advantage; it is a deli-
berate effort at modular design. Rather than grouping tools into
enormous packages, enforcing virtually an entire way of life onto a
user, we prefer a set of individually small and adaptable tools, each
doing one job well. As a result, our tools are used for a wider
variety of jobs than most; we have jocularly defined a successful tool
as one that was used to do something undreamed of by its author
(both Yacc and Lex are successful by this definition).

More seriously, a successful tool must be used. A form of
Darwinism is practiced on our UNIX system; programs which are not
used are removed from the system. Utilities thus compete for the
available jobs and users. Lex, for example, seems to have found an
ecological niche in the input phase of programs which accept
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complex input languages . Originally it had been thought that it
would also be employed for jobs now handled by editor scripts, but
most users seem to be sticking with the various editors. Some par-
ticularly complicated rearrangements (those which involve
memory), however, are done with Lex. Data validation and statis-
tics gathering is still an open area; the editors are unsuitable, and
Lex competes with C programs and a new language called awk,10
with no tool having clear dominance. Yacc has a secure role as the
major tool now used for the first pass of compilers. It is also used
for complex input to many application programs, including Lex, the
desk calculator bc, and the typesetting language eqn. Yacc is also
used, with or without Lex, for some kinds of syntactic data valida-
tion.

Packaging is very important. Ideally, these tools would be avail-
able in several forms. Among the possible modes of access to an
algorithm might be a subroutine library, a program generator, a
command, or a full compiler. Of these, the program generator is
very attractive. It does not restrict the user as much as a command
or full compiler, since it is mixed with the user's own code in the
host language . On the other hand, since the generator has a reason-
able overview of the user's job, it can be more powerful than a sub-
routine library. Few operating systems today make it possible to
have an algorithm available in all forms without additional work,
and the program generator is a suitable compromise. The previous
compiler-compiler system on UNIX was a more restrictive and
inclusive system, TMG,11 and it is now almost unused. All the users
seem to prefer the greater flexibility of the program generators.

The usability and portability of the generators, however, depend
on the host language (s). The host language has a difficult task: it
must be a suitable target for both user and program generator. It
also must be reasonably portable; otherwise, the generator output is
not portable. Efficiency is important; the generator must write
sufficiently good code that the users do not abandon it to write their
own code directly. The host language must also not constrain the
generator unduly; for example, mechanically generated gotos are
not as dangerous as hand-written ones and should not be forbidden.
As a result, the best host languages are relatively low level.
Another way of seeing this is to observe that if the host language
has many complex compiling algorithms in it already, there may not
be much scope left for the generator. On the other hand if the
language is too low level (after all, the generators typically would
have little trouble writing in assembler), the users cannot use it.
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What is needed is a semantically low-level but syntactically con-
venient (and portable) language; C seems to work well.

Giving machine-generated code to a compiler designed for human
use sometimes creates problems, however. Compiler writers may
limit the number of initializers that can be written to several hun-
dred, for example, since "clearly" no reasonable user would write
more than that number of array elements by hand. Unfortunately,
Yacc and Lex can generate arrays of thousands of elements to
describe their finite automata. Also, if the compiler lacks a facility
for adjusting diagnostic line numbers, the error messages will not
reflect the extra step in code generation, and the line numbers in
them may be unrelated to the user's original input file. (Remember
that, although the generated code is presumably error-free, there is
also user-written code intermixed).

Other difficulties arise from built-in error checking and type han-
dling. Typically, the generator output is quite reliable, as it often is
based on a tight mathematical model or construction. Thus, often
one may have nearly perfect confidence that array bounds do not
overflow, that defaults in switches are never taken, etc. Neverthe-
less, compilers which provide such checks often have no way of
selectively, or generally, overriding them. In the worst case, this
checking can dominate the inner loop of the algorithm embodied in
the generated module, removing a great deal of the attractiveness of
the generated program.

We should not exaggerate the problems with host languages: in
general, C has proven very suitable for the job. The concept of
splitting the work between a generator and a host language is very
profitable for both sides; it relieves pressure on the host language to
provide many complex features, and it relieves pressure on the pro-
gram generators to turn into complete general-purpose languages. It
encourages modularity; and beneath all the buzzwords of "top-down
design" and "structured programming," modularity is really what
good programming is all about.
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Many, if not most, UNIX* systems are dedicated to specific projects and

serve small, cohesive groups of (usually technically oriented) users. The

Programmer's Workbench UNIX system (PWBIUNIX for short) is a facility

based on the UNIX system that serves as a large, general-purpose, "util-

ity " computing service. It provides a convenient working environment

and a uniform set of programming tools to a very diverse group of users.

The PWBIUNIX system has several interesting characteristics:

(i) Many of its facilities were built in close cooperation between
developers and users.

(ii) It has proven itself to be sufficiently reliable so that its users, who
develop production software, have abandoned punched cards,
private backup tapes, etc.

(iii) It offers a large number of simple, understandable program-
development tools that can be combined in a variety of ways; users
"package" these tools to create their own specialized environments.

(iv) Most importantly, the above were achieved without compromising

the basic elegance, simplicity, generality, and ease of use of the

UNIX system.

The result has been an environment that helps large numbers of users to
get their work done, that improves their productivity, that adapts quickly
to their individual needs, and that provides reliable service at a relatively
low cost. This paper discusses some of the problems we encountered in
building the PWBIUNIX system, how we solved them, how our system is
used, and some of the lessons we learned in the process.

. UNIX is a trademark of Bell Laboratories.
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I. INTRODUCTION

The Programmer's Workbench UNIX* system (hereafter called
PWB/UNIX for brevity) is a specialized computing facility dedicated to
supporting large software-development projects. It is a production
system that has been used for several years in the Business Informa-
tion Systems Programs (BISP) area of Bell Laboratories and that sup-
ports there a user community of about 1,100 people. It was
developed mainly as an attempt to improve the quality, reliability,
flexibility, and consistency of the programming environment. The
concepts behind the PWB/UNIX system emphasize several ideas:

(i) Program development and execution of the resulting pro-
grams are two radically different functions. Much can be
gained by assigning each function to a computer best suited to
it. Thus, as much of the development as possible should be
done on a computer dedicated to that task, i.e., one that acts
as a "development facility" and provides a superior program-
ming environment. Production running of the developed pro-
ducts very often occurs on another computer, called a "tar-
get" system. For some projects, a single system may success-
fully fill both roles, but this is rare, because most current
operating systems were designed primarily for running pro-
grams, with little thought having been given to the require-
ments of the program-development process; we did the exact
opposite of this in the PWB/UNIX system.

(ii) Although there may be several target systems (possibly sup-
plied by different vendors), the development facility should
present a single, uniform interface to its users. Current tar-
gets for the PWB/UNIX system include IBM System/370 and
UNIVAC 1100-series computers; in some sense, the PWB/UNIX
system is also a target, because it is built and maintained with
its own tools.

(iii) A development facility can be implemented on computers of
moderate size, even when the target machines consist of very
large systems.

Although PWB/UNIX is a special-purpose system (in the same sense
that a "front-end" computer is a special-purpose system), it is spe-
cialized for use by human beings. As shown in Fig. 1, it provides
the interface between program developers and their target

* UNIX is a trademark of Bell Laboratories.
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Fig. 1-PwB,UNIXTM interface with its users.

computer(s). Unlike a typical "front-end," the PWB/UNIX system
supplies a separate, visible, uniform environment for program-
development work.

II. CURRENT STATUS

The PWB/UNIX installation at BISP currently consists of a network
of DEC PDP-11/45s and /70s running a modified version of the UNIX
system.* By most measures, it is the largest known UNIX installation
in the world. Table I gives a "snapshot" of it as of October 1977.

The systems are connected to each other so that each can be
backed up by another, and so that files can be transmitted efficiently
among systems. They are also connected by communications lines
to the following target systems: two IBM 370/168s, two UNIVAC
1100-series systems, and one XDS Sigma 5. Of the card images pro-
cessed by these targets, 90 to 95 percent are received from
PWB/UNIX systems. Average figures for prime-shift connect time

Table I - PWB/UNIXTM hardware at BISP (10/77)

System CPU Memory Disk Dial-up Login
name type (K-bytes) (M-bytes) ports names

A /45 256 160 15 153
B /70 768 480 48 260
D /70 512 320 48 361
E /45 256 160 20 114
F /70 768 320 48 262
G /70 512 160 48 133
H /70 512 320 48 139

Totals - 3,328 1,920 275 1,422

* In order to avoid ambiguity, we use in this paper the expression "Research UNIX
system" to refer to the UNIX system itself (Refs. 1 and 2).
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The approach embodied in the PWB/UNIX system offers significant
advantages in the presence of certain conditions, all of which existed
at the original PWB/UNIX installation, thus giving us a strong motiva-
tion for adopting this approach. We discuss these conditions below.

4.1 Gain by effective specialization

The computer requirements of software developers often diverge
quite sharply from those of the users of that software. This observa-
tion seems especially applicable to software-development organiza-
tions such as BISP, i.e., organizations that develop large, data-base-
oriented systems. Primary needs of developers include:

(i) Interactive computing services that are convenient, inexpen-
sive, and continually available during normal working hours
(where often the meaning of the expression "normal working
hours" is "22 hours per day, 7 days per week").

(u) A file structure designed for convenient interactive use; in
particular, one that never requires the user to explicitly allo-
cate or compact disk storage, or even to be aware of these
activities.

(iii) Good, uniform tools for the manipulation of documents,
source programs, and other forms of text. In our opinion, all
the tasks that make up the program-development process and
that are carried out by computers are nothing more than
(sometimes very arcane) forms of text processing and text
manipulation.

(iv) A command language simple enough for everyone to use, but
one that offers enough programming capability to help auto-
mate the operational procedures used to track and control pro-
ject development.

(v) Adaptability to frequent and unpredictable changes in loca-
tion, structure, and personnel of user organizations.

On the other hand, users of the end products may have any or all of
the following needs:

(i) Hardware of the appropriate size and speed to run the end
products, possibly under stringent real-time or deadline con-
straints.

(ii) File structures and access methods that can be optimized to
handle large amounts of data.

(iii) Transaction-oriented teleprocessing facilities.
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GO The use of a specific type of computer and operating system,
to meet any one of a number of possible (often externally
imposed) requirements.

Few systems meet all the requirements of both developers and
users. As a result, it is possible to make significant gains by provid-
ing two separate kinds of facilities and optimizing each to match one
of two distinct sets of requirements.

4.2 Availability of better software

Time-sharing systems that run on large computers often retain
significant vestiges of batch processing. Separation of support func-
tions onto an appropriate minicomputer may offer an easy transition
to more up-to-date software. Much of the stimulus for PWB/UNIX
arose from the desire to make effective use of the UNIX system,
whose facilities are extremely well matched to the developers' needs
discussed above.

4.3 Installations with target systems from different vendors

It is desirable to have a uniform, target-independent set of tools
to ease training and to permit the transfer of personnel between pro-
jects. File structures, command languages, and communications
protocols differ widely among targets. Thus, it is expensive, if not
impossible, to build a single set of effective and efficient tools that
can be used on all targets. Effort is better expended in building a
single good development facility.

4.4 Changing environments

Changes to hardware and software occur and cause problems even
in single-vendor installations. Such changes may be disastrous if
they affect both development and production environments at the
same time. The problem is at least partially solved by using a
separate development system. As an example, in the last few years,
every BISP target system has undergone several major
reconfigurations in both hardware and software, and the geographic
work locations of most users have changed, in some cases more
than once. The availability of the PWB/UNIX system often has been
able to minimize the impact of these changes on the users.
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4.5 Effective testing of terminal -oriented systems

It is difficult enough to test small batch programs; effective testing
of large, interactive, data-base management applications is far more
difficult. It is especially difficult to perform load testing when the
same computer is both generating the load and running the program
being tested. It is simpler and more realistic to perform such testing
with the aid of a separate computer.

V. DESIGN APPROACH

In early 1974, much thought was given to what should be the
overall design approach for the PWB/UNIX system. One proposal
consisted of first designing it as a completely integrated facility, then
implementing it, and finally obtaining users for it. A much
different, less traditional approach was actually adopted; its elements
were:

(i) Follow the UNIX system's philosophy of building small,
independent tools rather than large, interrelated ones. Follow
the UNIX system's approach of minimizing the number of
different file formats.

(ii) Get users on-the system quickly, work with them closely, and
let their needs and problems drive the design.

GO Build software quickly, and expect to throw much of it away,
or to have to adapt it to the users' real needs, as these needs
become clear. In general, emphasize the ability to adapt to
change, rather than try to build perfect products that are
meant to last forever.

(iv) Make changes to the UNIX system only after much delibera-
tion, and only when major gains can be made. Avoid chang-
ing the UNIX system's interfaces, and isolate any such changes
as much as possible. Stay close to the Research UNIX system,
in order to take advantage of continuing improvements.

This approach may appear chaotic, but, in practice, it has worked
better than designing supposedly perfect systems that turn out to be
obsolete or unusable by the time they are implemented. Unlike
many other systems, the UNIX system both permits and encourages
this approach.

VI. DIFFERENCES BETWEEN RESEARCH UNIX AND PWB/UNIX

The usage and operation of the PWB/UNIX system differ somewhat
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from those of most UNIX systems within Bell Laboratories. Many of
the changes and additions described below derive from these crucial
differences.

A good many UNIX (as opposed to PWB/UNIX) systems are run
as "friendly-user" systems, and are each used by a fairly small
number of people who often work closely together. A large frac-
tion of these users have read/write permissions for most (or all)
of the files on the system, have permission to add commands to
the public directories, are capable of "re-booting" the operating
system, and even know how to repair damaged file systems.

The PWB/UNIX system, on the other hand, is most often found
in a computer-center environment. Larger numbers of users are
served, and they often represent different organizations. It is
undesirable for everyone to have general read/write permissions.
Although groups of users may wish to have sets of commands
and files whose use they share, too many people must be served
to permit everyone to add commands to public directories. Few
users write C programs, and even fewer are interested in file-
system internals. Machines are run by operators who are not
expert system programmers. Many users have to to deal with
large quantities of existing source code for target computers.
Many must integrate their use of the PWB/UNIX system into exist-
ing procedures and working methods.

Notwithstanding all the above problems, we continually made
every attempt to retain the "friendly-user" environment wherever
possible, while extending service to a large group of users charac-
terized by a very wide spectrum of needs, work habits, and usage
patterns. By and large, we succeeded in this endeavor.

VII. NEW FACILITIES

A number of major facilities had to be made available in the

PWB/UNIX system to make it truly useful in the BISP environment.

Initial versions of many of these additional components were writ-

ten and in use during early 1974. This section describes the

current form of these additions (most of which have been heavily

revised with the passage of time).

7.1 Remote job entry

The PWB/UNIX Remote Job Entry (RJE) subsystem handles the
problems of transmitting jobs to target systems and returning
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output to the appropriate users; RJE per se consists of several
components, and its use is supported by various other commands.

The send command is used to generate job streams for target
systems; it is a form of macro-processor, providing facilities for
file inclusion, keyword substitution, prompting, and character
translation (e.g., ASCII to EBCDIC). It also includes a generalized
interface to other UNIX commands, so that all or parts of job
streams can be generated dynamically by such commands; send
offers the users a uniform job-submission mechanism that is
almost entirely target-independent.

A transmission subsystem exists to handle communications with
each target. "Daemon" programs arrange for queuing jobs, sub-
mitting these jobs to the proper target, and routing output back to
the user. Device drivers are included in the operating system to
control the physical communications links. Some of the code in
this subsystem is target-specific, but this subsystem is not visible
to end users.

Several commands are used to provide status reporting. Users
may inquire about the status of jobs on the target systems, and
can elect to be notified in various ways (i.e., on-line or in absen-
tia) of the occurrence of major events during the processing of
their jobs.

A user may route the target's output to a remote printer or
may elect to have part or all of it returned to the originating
PWB/UNIX system. On return, output may be processed automati-
cally by a user-written procedure, or may be placed in a file; it
may be examined with the standard UNIX editor, or it can be
scanned with a read-only editor (the "big file scanner") that can
peruse larger files; RJE hides from the user the distinction
between PWB/UNIX files, which are basically character-oriented,
and the files of the target system, which are typically record-
oriented (e.g., card images and print lines). See Ref. 5 for exam-
ples of the use of RJE.

7.2 Source code control system

The PWB/UNIX Source Code Control System (SCCS) consists of a
small set of commands that can be used to give unusually power-
ful control over changes to modules of text (i.e., files of source
code, documentation, data, or any other text). It records every
change made to a module, can recreate a module as it existed at
any point in time, controls and manages any number of
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concurrently existing versions of a module, and offers various
audit and administrative features.6

7.3 Text processing and document preparation

One of the distinguishing characteristics of the Research UNIX
system is that, while it is a general-purpose time-sharing system,
it also provides very good text-processing and document-
preparation tools.? A major addition in this area provided by the
PWB/UNIX system is PWB/MM, a package of formatting "macros"
that make the power of the UNIX text formatters available to a
wider audience; PWB/MM has, by now, become the de facto Bell
Laboratories standard text-processing macro package; it is used by
hundreds of clerical and technical employees. It is an easily
observable fact that, regardless of the initial reasons that attract
users to the PWB/UNIX system, most of them end up using it
extensively for text processing. See Ref. 8 for a further discus-
sion of this topic.

7.4 Test drivers

The PWB /UNIX system is often used as a simulator of interactive
terminals to execute various kinds of tests of IBM and UNIVAC
data-base management and data communications systems, and of
applications implemented on these systems ; it contains two test
drivers that can generate repeatable tests for very complex sys-
tems; these drivers are used both to measure performance under
well-controlled load and to help verify the initial and continuing
correct operation of this software while it is being built and main-
tained. One driver simulates a TELETYPE® CDT cluster controller
of up to four terminals, and is used to test programs running on
UNIVAC 1100-series computers . The other ( LEAP) simulates one
or more IBM 3270 cluster controllers , each controlling up to 32
terminals . During a test , the actions of each simulated terminal
are directed by a scenario , which is a specification of what scripts
should be executed by that terminal. A script consists of a set of
actions that a human operator might perform to accomplish some
specific , functional task (e.g., update of a data-base record). A
script can be invoked one or more times by one or more
scenarios . High - level programming languages exist for both
scripts and scenarios ; these languages allow one to specify the
actions of the simulated terminal-operator pairs, as well as a large

THE PROGRAMMER ' S WORKBENCH 2187



variety of test-data recording, error-detection, and error-correction
actions. See Ref. 9 for more details on LEAP.

VIII. MODIFICATIONS TO THE UNIX SYSTEM

Changes that we made to the UNIX operating system and com-
mands were made very carefully, and only after a great deal of
thoughtful deliberation. Interface changes were especially avoided.
Some changes were made to allow the effective use of the UNIX
system in a computer-center environment. In addition, a number
of changes were required to extend the effective use of the UNIX
system to larger hardware configurations, to larger numbers of
simultaneous users, and to larger organizations sharing the
machines.

8.1 Reliability

The UNIX system has generally been very reliable. However,

some problems surfaced on PWB/UNIX before showing up on other

UNIX systems simply because PWB/UNIX systems supported a larger

and heavier time-sharing load than most other installations based

on UNIX. The continual need for more service required these sys-

tems to be run near the limits of their resources much of the

time, causing, in the beginning, problems seldom seen on other

UNIX systems. Many such problems arose from the lack of detec-

tion of, or reasonable remedial action for, exhaustion of

resources. As a result, we made a number of minor changes to

various parts of the operating system to assure such detection of

resource exhaustion, especially to avoid crashes and to minimize

peculiar behavior caused by exceeding the sizes of certain tables.

The first major set of reliability improvements concerned the
handling of disk files. It is a fact of life that time-sharing sys-
tems are continually short of disk space; PWB/UNIX is especially
prone to rapid surges in disk usage, due to the speed at which
the RJE subsystem can transfer data and use disk space. Experi-
ence showed that reliable operation requires RJE to be able to
suspend operations temporarily, rather than throwing away good
output. The ustat system call was added to allow programs to
discover the amount of free space remaining in a file system.
Such programs could issue appropriate warnings or suspend opera-
tion, rather than attempt to write a file that would consume all
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the free disk space and be, itself, truncated in the process, caus-
ing loss of precious data; the ustat system call is also used by the
PWB/UNIX text editor to offer a warning message instead of
silently truncating a file when writing it into a file system that is
nearly full. In general, the relative importance of files depends
on their cost in terms of human effort needed to (re)generate
them. We consider information typed by people to be more valu-
able than that generated mechanically.

A number of operational procedures were instituted to improve
file-system reliability. The main use of the PWB/UNIX system is
to store and organize files, rather than to perform computations.
Therefore, every weekday morning, each user file is copied to a
backup disk, which is saved for a week. A weekly tape backup
copy is kept for two months; bimonthly tape copies are kept
"forever"-we still have the tapes from January 1974. The disk
backup copies permit fast recovery from disk failure or other
(rare) disasters, and also offer very fast recovery when individual
user files are lost; almost always, such files are lost not because
of system malfunctions, but because people inevitably make mis-
takes and delete files that they really wish to retain. The long-
term tape backup copies, on the other hand, offer users the
chance to delete files that they might want back at some time in
the future, without requiring them to make "personal" copies.

A second area of improvement was motivated by the need for
reliable execution of long-running procedures on machines that
operate near the limits of their resources. Any UNIX system has
some bound on the maximum number of processes permitted at
any one time. If all processes are used, it is impossible to suc-
cessfully issue the fork system call to create a new process.
When this happens, it is difficult for useful work to get done,
because most commands execute as separate processes. Such
transient conditions (often lasting only a few seconds) do cause
occasional, random failures that can be extremely irritating to the
users (and, potentially, destroy their trust in the system). To
remedy this situation, the shell was changed so that it attempts
several fork calls, separated from one another by increasing
lengths of time. Although this is not a general solution, it did
have the practical effect of decreasing the probability of failure to
the point that user complaints ceased. A similar remedy was
applied to the command-execution failures due to the near-
simultaneous attempts by several processes to execute the same
pure-text program.
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These efforts have yielded production systems that users are
willing to trust. Although a file is occasionally lost or scrambled
by the system, such an event is rare enough to be a topic for dis-
cussion, rather than a typical occurrence. Most users trust their
files to the system and have thrown away their decks of cards.
This is illustrated by the relative numbers of keypunches (30) and
terminals (550) in BISP. Users have also come to trust the fact
that their machines stay up and work. On the average, each
machine is down once a week during prime shift, averaging 48
minutes of lost time, for total prime-shift availability of about 98
percent. These figures include the occasional loss of a machine
for several hours at a time, i.e., for hardware problems. How-
ever, the net availability to most users has been closer to 99 per-
cent, because most of the machines are paired and operational
procedures exist so that they can be used to back each other up.
This eliminates the intolerable loss of time caused by denying to
an entire organization access to the PWB/UNIX system for as much
as a morning or an afternoon. Such availability of service is
especially critical for organizations whose daily working procedures
have become intertwined with PWB/UNIX facilities, as well as for
clerical users, who may have literally nothing to do if they cannot
obtain access to the system.

Thus, users have come to trust the systems to run reliably and
to crash very seldom. Prime-shift down-time may occur in
several ways. A machine may be taken down voluntarily for a
short period of time, typically to fix or rearrange hardware, or for
some systems programming function. If the period is short and
users are given reasonable notice, this kind of down-time does
not bother users very much. Some down-time is caused by
hardware problems. Fortunately, these seldom cause outright
crashes; rather, they cause noticeable failures in communications
activities, or produce masses of console error messages about disk
failures. A system can "lock-up" because it runs out of
processes, out of disk space, or out of some other resource. An
alert operator can fix some problems immediately, but occasionally
must take the system down and reinitialize it. The causes and
effects of the "resource-exhaustion" problems are fairly well-
known and generally thought to offer little reason for consterna-
tion. Finally, there is the possibility of an outright system crash
caused by software bugs. As of mid-1977, the last such crash on
a production machine occurred in November 1975.
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8.2 Operations

At most sites, UNIX systems have traditionally been operated
and administered by highly trained technical personnel; initially,
our site was operated in the same way. Growth in PWB/UNIX ser-
vice eventually goaded us into getting clerical help. However, the
insight that we gained from initially doing the job ourselves was
invaluable; it enabled us to perceive the need for, and to provide,
operational procedures and software that made it possible to
manage a large, production-oriented, computer-center-like service.
For instance, a major operational task is "patching up" the file
system after a hardware failure. In the worst cases, this work is
still done by system programmers, but cases where system
recovery is fairly straightforward are now handled by trained
clerks. Our first attempt at writing an operator's manual dates
from that time.

In the area of system administration, resource allocation and
usage accounting have become more formal as the number of sys-
tems has grown. Software was developed to move entire sections
of a file system (and the corresponding groups of users) from
volume to volume, or from one PWB/UNIX system to another
without interfering with linked files or access history. A major
task in this area has been the formalization and the speeding-up
of the file-system backup procedures.

By mid-1975, it was clear that we would soon run out of
unique "user-ID" numbers. We resisted user pressure to re-use
numbers among PWB/UNIX systems. Our original reason was to
preserve our ability to back up each PWB/UNIX system with
another one; in other words, the users and files from any system
that is down for an extended period should be able to be moved
to another, properly configured system. This was difficult enough
to do without the complication of duplicated user-IDs. Such
backup has indeed been carried out several times. However, the
two main advantages of retaining unique user-IDS were:

(i) Protecting our ability to move users permanently from one
system to another for organizational or load-balancing pur-
poses.

(ii) Allowing us to develop reasonable means for communicat-
ing among several systems without compromising file secu-
rity.

We return to the subject of user-IDs in Section 8.4 below.
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8.3 Performance improvements

A number of changes were made to increase the ability of the

PWB/UNIX system to run on larger configurations and support

more simultaneous users. Although demand for service almost

always outran our ability to supply it, minor tuning was eschewed

in favor of finding ways to gain large payoffs with relatively low

investment.

For a system such as PWB/UNIX, it is much more important to
optimize the use of moving-head disks than to optimize the use
of the CPU. We installed a new disk driver* that made efficient
use of the RP04 (IBM 3330-style) disk drives in multi-drive
configurations. The seek algorithm was rewritten to use one
(sorted) list of outstanding disk-access requests per disk drive,
rather than just one list for the entire system; heuristic analysis
was done to determine what i/o request lead-time yields minimal
rotational delay and maximal throughput under heavy load. The
effect of these changes and of changes in the organization of the
disk free-space lists (which are now optimized by hardware type
and load expectation) have nearly tripled the effective multi-drive
transfer rate. Current PWB/UNIX systems have approached the
theoretical maximum disk throughput. On a heavily loaded sys-
tem, three moving-head drives have the transfer capacity of a sin-
gle fixed-head disk of equivalent size. The C program listing for
the disk driver is only four pages long; this made it possible to
experiment with it and to tune it with relative ease.

Minor changes were made in process scheduling to avoid "hot
spots" and to keep response time reasonable, even on heavily
loaded systems. Similarly, the scheduler and the terminal driver
were also modified to help maintain a reasonable rate of output to
terminals on heavily loaded systems. We have consciously chosen
to give up a small amount of performance under a light load in
order to gain performance under a heavy load.

Several performance changes were made in the shell. First, a
change of just a few lines of code permitted the shell to use
buffered "reads," eliminating about 30 percent of the CPU time
used by the shell. Second, a way was found to reduce the aver-
age number of processes created in a day, also by approximately
30 percent; this is a significant saving, because the creation of a
process and the activation of the corresponding program typically

* Written by L. A. Wehr.
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require about 0.1 second of CPU time and also incur overhead for
vo. To accomplish this, shell accounting data were analyzed to
investigate the usage of commands. Each PWB/UNIX system typi-
cally had about 30,000 command executions per day. Of these,
30 percent resulted from the execution of just a few commands,
namely, the commands used to implement flow-of-control con-
structs in shell procedures. The overhead for invoking them typi-
cally outweighed their actual execution time. They were absorbed
(without significant changes) into the shell. This reduced some-
what the CPU overhead by eliminating many fork calls. Much
more importantly, it reduced disk I/o in several ways: swapping
due to forks was reduced, as was searching for commands; it also
reduced the response time perceived by users executing shell
procedures-the improvement was enough to make the use of
these procedures much more practical. These changes allowed us
to provide service to many more users without degrading the
response time of our systems to an unreasonable degree.

The most important decision that we made in this entire area
of reliability and performance was our conscious choice to keep
our system in step with the Research UNIX system; its developers
have been most helpful: they quickly repaired serious bugs, gave
good advice where our needs diverged from theirs, and "bought
back" the best of our changes.

8.4 User environment

During 1975, a few changes that altered the user environment
were made to the operating system, the shell, and a few other
commands. The main result of these changes was to more than
double the size of the user population to which we could provide
service without doing major harm to the convenience of the UNIX
system. In particular, several problems had to be overcome to
maintain the ease of sharing data and commands. This aspect of
the UNIX system is popular with its users, is especially crucial for
groups of users working on common projects, and distinguishes
the UNIX system from many other time-sharing systems, which
impose complete user-from-user isolation under the pretense of
providing privacy, security, and protection.

Initially, the UNIX system had a limit of 256 distinct user-IDs;l
this was adequate for most UNIX installations, but totally inade-
quate for a user population the size of ours. Various solutions
were studied, and most were rejected. Duplicating user-IDs across
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machines was rejected for operational reasons, as noted in
Section 8.2 above. A second option considered was that of
decreasing the available number of the so-called "group-IDs," or
removing them entirely, and using the bits thus freed to increase
the number of distinct user-IDs. Although attractive in many
ways, this solution required a change in the interpretation of
information stored with every single disk file (and every backup
copy thereof), changes to large numbers of commands, and a fun-
damental departure from the Research UNIX system during a time
when thought was being given to possible changes to that
system's protection mechanisms. For these reasons, this solution
was deemed unwise.

Our solution was a modest one that depended heavily on the
characteristics of the PWB/UNIX user community, which, as men-
tioned above, consists mostly of groups of cooperating users,
rather than of individual users working in isolation from one
another. Typical behavior and opinions in these groups were:

(i) Users in such a group cared very little about how much
protection they had from each other, as long as their files
were protected from damage by users outside their group.

(ii) A common password was often used by members of a
group, even when they owned distinct user-IDs. This was
often done so that a needed file could be accessed without
delay when its owner was unavailable.

(iii) Most users were willing to have only one or two user-IDs
per group, but wanted to retain their own login names and
login directories. We also favored such a distinction, because
experience showed that the use of a single login name by
more than a few users almost always produced cluttered
directory structures containing useless files.

(iv) Users wanted to retain the convenience of inter-user com-
munication through commands (e.g., write and mail) that
automatically identified the sending person.

The Research UNIX login command maps a login name into a

user-ID, which thereafter identifies that user. Because the map-

ping from login name to user-ID is many-to-one in PWB/UNIX, a

given user-ID may represent many login names. It was observed

that the login command knew the login name, but did not record

it in a way that permitted consistent retrieval. The login name

was added to the data recorded for each process and the udata
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system call was added to set or retrieve this value; the login
command was modified to record the login name and a small
number of other commands (such as write and mail) were
changed to obtain the login name via the udata system call.
Finally, to improve the security of files, a few commands were
changed to create files with read/write permission for their own-
ers, but read-only for everyone else. The net effect of these
changes was to greatly enlarge the size of the user community
that could be served, without destroying the convenience of the
UNIX system and without requiring widespread and fundamental
changes.

The second problem was that of sharing commands. When a
command is invoked, the shell first searches for it in the current
directory, then in directory /bin, and finally in directory / usr/bin.
Thus, any user may have private commands in one of his or her
private directories, while /bin is a repository for the most fre-
quently used public commands, and /usr /bin usually contains less
frequently used public commands. On many systems, almost any-
one can install commands in /usr /bin. Although this is practical
for a system with twenty or so users, it is unworkable for systems
with 200 or more, especially when a number of unrelated organi-
zations share a machine. Our users wanted to create their own
commands, invoked in the same way as public commands. Users
in large projects often wanted several sets of such commands:
project, department, group, and individual.

The solution in this case was to change the shell (and a few
other commands, such as nohup and time ) to search a user-
specified list of directories, instead of the existing fixed list. In
order to preserve the consistency of command searching across
different programs, it was desirable to place a user-specified list
where it could be accessed by any program that needed it. This
was accomplished through a mechanism similar to that used for
solving the previous problem. The login command was changed
to record the name of the user's login directory in the per-process
data area. Each user could record a list of directories to be
searched in a file named path in his or her login directory, and
the shell and other commands were changed to read this file.
Although a few users wished to be able to change this list more
dynamically than is possible by editing the path file, most users
were satisfied with this facility, and, as a matter of observed fact,
altered that file infrequently. In many projects, the project
administrator creates an appropriate path file and then makes
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links to it for everyone else, thus ensuring consistency of com-
mand names within the project.

These changes were implemented in mid-1975. Their effect
was an upsurge in the number of project-specific commands, writ-
ten to improve project communication, to manage project data
bases, to automate procedures that would otherwise have to be
performed manually, and, generally, to customize the user
environment provided by the PWB/UNIX system to the needs of
each project. The result was a perceived increase in user produc-
tivity, because our users (who are, by and large, designers and
builders of software) began spending significantly less time on
housekeeping tasks, and correspondingly more time on their end
products; see Ref. 5 for comments on this entire process by some
early PWB/UNIX users.

8.5 Extending the use of the shell

A number of extensions were made to the shell to improve its
ability to support shell programming, while leaving its user inter-
face as unchanged as possible. These changes were made only
after a great deal of trepidation, because they clearly violated the
UNIX system's principle of minimizing the complexity of "central"
programs, and because they represented a departure from the
Research UNIX shell; these departures consisted of minor changes
in syntax, but major changes in intended usage.

During 1974 and early 1975, the PWB/UNIX shell was the same
as the Research UNIX shell, and its usage pattern was similar, i.e.,
it was mainly used to interpret commands typed at a terminal and
occasionally used to interpret (fairly simple) files of commands.
A good explanation of the original shell philosophy and usage
may be found in Ref. 10. At that time, shell programming abili-
ties were limited to simple handling of a sequence of arguments,
and flow of control was directed by if, goto, and exit-separate
commands whose use gave a Fortran-like appearance to shell pro-
cedures. During this period, we started experimenting with the
use of the shell. We noted that anything that could be written as
a shell procedure could always be written in C, but the reverse
was often not true. Although C programs almost always executed
faster, users preferred to write shell procedures, if at all possible,
for a number of reasons:

(i) Shell programming has a "shallow" learning curve, because
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anyone who uses the UNIX system must learn something
about the shell and a few other commands; thus little addi-
tional effort is needed to write simple shell procedures.

(ii) Shell programming can do the job quickly and at a low cost
in terms of human effort.

(iii) Shell programming avoids waste of effort in premature
optimization of code. Shell procedures are occasionally
recoded as C programs, but only after they are shown to be
worth the effort of being so recoded. Many shell pro-
cedures are executed no more frequently than a few times
a day; it would be very difficult to justify the effort to
rewrite them in C.

(iv) Shell procedures are small and easy to maintain, especially
because there are no object programs or libraries to
manage.

Experience with shell programming led us to believe that some
very modest additions would yield large gains in the kinds of pro-
cedures that could be written with the shell. Thus, in mid-1975,
we made a number of changes to the shell, as well as to other
commands that are used primarily in shell procedures. The shell
was changed to provide 26 character-string variables and a com-
mand that sets the value of such a variable to an already existing
string, or to a line read from the standard input. The if com-
mand was extended to allow a "nestable" if-then-else-endif
form, and the expr command was created to provide evaluation
of character-string and arithmetic expressions. These changes, in
conjunction with those described in Section 8.4 above, resulted in
a dramatic increase in the use of shell programming. For exam-
ple, procedures that lessened the users' need for detailed
knowledge of the target system's job control language were writ-
ten for submitting RJE jobs,* groups of commands were written to
manage numerous small data bases, and many manual procedures
were automated. A more detailed discussion of shell usage pat-
terns (as of June 1976) may be found in Ref. 11.

Further changes have been made since that time, mainly to
complete the set of control structures (by adding the switch and
while commands), and also to improve performance, as explained
in Section 8.3 above.

* Target-system users who interact with these targets via the PWB /UNIX RJE subsystem
make about 20 percent fewer errors in their job control statements than those who
interact directly with the targets.
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Laboratories Computing Science Research Center for creating the
UNIX system itself, as well as for their advice and support.
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The intent of this paper is twofold: first, to comment on the general

properties of the UNIX* operating system as a tool for software product

development and as a basis for such products ; and second, to introduce

the remaining papers of this issue.

1. A BRIEF HISTORY

Bell Laboratories has employed minicomputers in laboratory work
since they first became available. By the early 1970s, several hun-
dred minicomputers were controlling experiments, supporting
machine-aided design, providing remote-job-entry facilities for com-
putation centers, and supplying peripheral support for Electronic
Switching Systems laboratories. The availability of the C-language
version of the UNIX system in 1973 coincided with the emergence of
several new factors related to minicomputers at Bell Laboratories:

(i) The cost, reliability, and capacity of minicomputers-
especially improvements in their peripherals-made applica-
tions possible that were previously not economical.

(ii) Minicomputer-based systems were being selected for installa-
tion in operating telephone companies to assist in the
administration and maintenance of the telephone plant.

* UNIX is a trademark of Bell Laboratories.
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(iii) Many such projects were started in a period of a few months,
which meant that many engineers were suddenly shifted into
minicomputer software development.

(iv) The pressures to develop and install these systems rapidly
were very great.

Needless to say, the same factors applied to the laboratory uses of
minicomputers, but not on the same scale. Product planning esti-
mates suggested that over 1500 such minicomputer-based support
systems would be installed in the Bell System by the early 1980s.

The developers of each of these early minicomputer-based pro-
jects had to either write their own operating system or find a suitable
system elsewhere. The UNIX operating system had become available
from the Bell Laboratories computing research organization, and
projects were encouraged to use it for their software development.
Most projects originally planned to use the UNIX system to develop
their own special-purpose operating systems for deployment with
their applications. However, all projects were encouraged to con-
sider the UNIX system for deployment with their applications as well.
These early projects found that the UNIX operating system provided
excellent programming and documentation tools, and was
significantly better than the vendor-supplied alternatives then avail-
able; the C language and the UNIX system provided a means to rapid
development, test, and installation of their software products. Most
of these projects found that the UNIX system, with some local
modifications, could be used not only for program development, but
also as the base for the product itself.

No central support of the UNIX system-i.e., counseling, training,
bug fixing, etc.-was available or promised to these pioneer projects.
Documentation, aside from a good user's reference manual and the
C language listings, was also lacking. The first projects were handi-
capped by having to supply their own UNIX system support. In spite
of this added load, the UNIX system still proved a better choice than
the vendor-supported alternatives. Central support and improved
documentation were subsequently provided in 1974.

Many requests for improvements to the UNIX system came from
telephone-related development projects using it as the base for their
products. These projects wanted increased real-time control capabili-
ties in the UNIX system, as well as improved reliability. Even
though the systems produced by these projects were ancillary to the
telephone plant, Bell System operating telephone companies increas-
ingly counted on them for running their business. Reliability of
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these systems became an important issue, and significant support
effort was devoted to improving the detection of hardware failures
by the operating system. Mean-time-to-failure was generally ade-
quate for most projects; mean-time-to-repair was the problem.

Improvements were made that allow UNIX processes to communi-
cate and synchronize in real time more easily. However, additional
real-time features were needed to control the scheduling and execu-
tion of processes. In another research organization, H. Lycklama
and D. L. Bayer developed the MERT (Multi Environment Real-
Time) operating system. MERT supports the UNIX program-
development and text-processing tools, while providing many real-
time features. Some projects found MERT to be an attractive alterna-
tive to the UNIX system for their products. This led, in 1978, to the
support of two versions of UNIX: the time-sharing version (UNIX/TS)
and the real-time version (UNIX/RT). UNIX/TS is based on the
research version of the UNIX system with additional features found
to be useful in a time-sharing environment. UNIX/RT is based on
MERT and is tailored to the needs of projects with real-time require-
ments. The centrally supported UNIX/TS will become the basis for
PWB/UNIX as described by Dolotta et al., and will provide
computation-center UNIX service. Real-time projects are currently
evaluating UNIX/RT, and real-time features for UNIX are still a matter
for continuing investigation and study.

The UNIX and MERT operating systems have found wide accep-

tance both within the Bell System and without. There are currently

48 Bell Laboratories projects using the UNIX system and 18 using

MERT. Some 24 of these projects are developing products for use by

the Bell System operating telephone companies and have already

installed over 300 UNIX system-based products, with the installation

rate still accelerating. In addition, another 10 projects are using

PWB/UNIX, and many operating companies are evaluating PWB/UNIX

for programming and text-processing tasks within their companies.

Outside the Bell System, over 300 universities and commercial insti-

tutions are using the UNIX operating system. An important by-

product of university use is the growing availability of trained UNIX

programmers among computer science graduates.

II. WHY UNIX AND C?

Each of the following papers suggests why the UNIX system was
selected for a particular purpose, but some common themes are
worth emphasizing. As was suggested above, development projects
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initially selected the UNIX system as a program-development
environment. The earlier paper by Dolotta et al. admirably summar-
izes the general case for using the UNIX system. Minicomputer-
based projects, however, also have incorporated the UNIX system in
their final product, and this usage raised new requirements and con-
cerns. We shall attempt to categorize briefly these new require-
ments and explore their implications.

First, and most obvious, the products of many projects could be
considered simply a specialized use of a dedicated time-sharing ser-
vice; because the UNIX system appeared to be the most efficient
available minicomputer time-sharing system, it was an obvious
choice for such projects. Its flexibility, generality, and multipro-
gramming efficiency were just as advantageous for the applications
programs as for program developers. Even the existing scheduling
and priority mechanisms were adequate for some applications.

Because it was designed for the programming of the UNIX system
itself, the C language could also be used to implement even the
most complex subsystems. While almost all applications must com-
municate with special devices unique to their projects, C has an
elegant mechanism for solving this problem without special language
extensions. It depends upon the fact that the PDP-11 architecture
presents all device data and control registers as part of the operating
system's virtual address space. These registers can be accessed by
assigning absolute constants to pointer variables defined and mani-
pulated by standard C programs.

III. EXTENSIONS FOR REAL -TIME APPLICATIONS

Most projects with real - time applications found the UNIX system
wanting in several areas:

(i) Interprocess communication.
(ii) Efficient handling of large files with known structure.

(iii) Communication with special terminals, or using special line
protocols.

(iv) Priority scheduling of real-time processes.

The general theme is time efficiency; the standard UNIX system
already provides all the required functions in some form. What was
needed was the ability to "tune" and control these functions in the
context of each application. The papers that follow provide three
different answers to this problem:
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(i) Modify and extend the standard UNIX system to provide the
additional function or efficiency required.

(ii) Adopt MERT, which is a version of the UNIX system restruc-
tured to include many real-time functions.

(iii) Distribute the application between a central standard UNIX
operating system and coupled microprocessors or minicomput-
ers that handle the real-time activities.

Design of real -time applications is a very difficult area, and we
expect to see continuing controversy over the best way to handle
such applications. The paper by Cohen and Kaufeld argues elo-
quently why extending the UNIX system was the proper answer for
the Network Operations Control System project , while the paper by
Nagelberg and Pilla is equally persuasive in arguing that adoption of
MERT was the right answer for the Record Base Coordination System
project . The papers by Wonsiewicz et al. and Rovegno both describe
successful delegation of the real - time aspects of the application to
microprocessors connected to the standard UNIX configuration.

The project described by Wonsiewicz et al. is especially relevant.
The designers originally selected MERT for their central machine, but
in the end they did not use its real -time features . They were able to

put all time-sensitive processing into LSI - 11 microprocessors in the
individual laboratories, and then switched from the MERT system to
the UNIX system on their central machine to gain the greater robust-
ness and reliability of UNIX (the MERT system is newer than the

UNIX system, more complex , and less well -shaken-down by users).

IV. RELIABILITY AND PORTABILITY

Anything written on minicomputer applications in the telephone
system would be remiss if it did not mention the issues of reliability

and software portability. The introduction of commercial minicom-
puter hardware with its 5-year support horizons into the telephone
plant that has a 40-year-support tradition raises some obvious ques-
tions in the area of reliability and field support. The Bell System
investment in applications software must be preserved over long
periods of time in the face of rapid evolution of the underlying
hardware technology and economics.

The basic reliability of the UNIX software is very good. Note, for
example, the comments in Section 8.1 of the paper by Dolotta et al.
Using an operating system other than that supplied by the vendor
complicates hardware maintenance by the vendor. Effort has been
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expended in making the UNIX system report errors to the vendor's
field engineers in the language and formats that are used by their
own diagnostic software. The UNIX system is being improved in its
ability to report its own hardware difficulties, but this cannot be car-
ried very far without redesigning the hardware. None of the current
UNIx-based systems in the Bell System operating telephone com-
panies directly handle customer traffic, which significantly reduces
the reliability requirements of these systems. To achieve the relia-
bility required of Bell System electronic switching offices would
necessitate a large and carefully coordinated hardware and software
effort.

One of the goals in using the UNIX operating system in telephone
applications is to insulate the applications code as much as possible
from hardware variations that are driven by the vendors' marketing
goals and convenience. By controlling the UNIX system, applications
code can be largely protected from the vagaries of the underlying
hardware. Such hardware independence is clearly a matter of
degree, although full portability of the UNIX system across several
different hardware architectures without affecting applications is the
ultimate goal. Currently, the UNIX applications code moves quite
easily across the PDP-11 line. Experiments are under way to move
UNIX to different vendors' hardware, as described by Johnson and
Ritchie earlier in this issue. It is already clear that projects must
exercise care in how applications are written if they are to move
easily from one vendor's architecture to another. Fortunately, much
of the needed "care" is simply good C coding style, but unfor-
tunately, precise, complete rules that guarantee portability are prov-
ing both complex and a bit slippery. However, the basic idea of
using UNIX as an insulating layer continues to be the most attractive
option for preserving minicomputer applications software in the face
of hardware changes.

V. THE UNIX APPLICATION PAPERS

The six papers that follow describe a spectrum of applications built
upon the UNIX and MERT operating systems. The first paper, by
Wonsiewicz et al., describes a system handling the automation of a
number of diverse instruments in a materials-science research
laboratory. In the second paper, Fraser describes a UNIX system
used to build an engineering design aid for fast development of cus-
tomized electronic apparatus. The user works at an interactive
graphics terminal with a data base of standard integrated circuit
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packages, generating output ready to drive an automatic wiring
machine. The system makes judicious use of special hardware and
software facilities available in only two of the large Bell Laboratories
computation centers, which are accessed via communication links.
In the application described in the third paper, by Rovegno, the
UNIX system is used both as a tool and as a model for the develop-
ment of microprocessor support software. Whereas a UNIX system
was initially used to generate and load microprocessor software in a
time-sharing mode, many of its features were then carried over into
a small, dedicated microprocessor-based support system. The fourth
paper, by Pekarich, shows the use of a UNIX system in a develop-
ment laboratory for electronic switching systems. It replaces the
control portion of a large switching machine, illustrating the ease of
interfacing to several specialized devices in the telephone plant.

Whereas these four papers deal with one-of-a-kind systems in
research or development environments, the last two papers describe
the UNIX system-based products that are replicated throughout the
Bell System. The paper by Nagelberg and Pilla describes the MERT-
based Record Base Coordination System, which coordinates the
activities of several diverse data base systems. Ease of change, even
in the field, is the overriding requirement here; this pertains to the
interfaces as well as to the algorithms, which are all implemented in
the UNIX command language (shell). The paper by Cohen and
Kaufeld deals with the Network Operations Control System. It
represents the top level of a hierarchy of systems that collect tele-
phone traffic data and control the switching network. Characterized
by well-defined and stable interfaces and stringent performance
requirements, the design of this system exemplifies how real-time
requirements can be met by modifying the UNIX operating system.

VI. SUMMARY

The UNIX system has proven to be an effective production
environment for software development projects. It has proven to be
an appropriate base for dedicated products as well, though it has
often required modification and extension to be fully effective. The
near future promises better real-time facilities and some significant
portability advantages for the UNIX development community.
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UNIX Time -Sharing System:

Microcomputer Control of Apparatus,
Machinery, and Experiments

By B. C. WONSIEWICZ, A. R. STORM, and J. D. SIEBER
(Manuscript received January 27, 1978)

Microcomputers, operating as satellite processors in a UNIX* system,
are at work in our laboratory collecting data, controlling apparatus and
machinery, and analyzing results. The system combines the benefits of
low-cost hardware and sophisticated UNIX software. Software tools have
been developed that accomplish timing and synchronization; data acquisi-
tion, storage, and archiving; command signal generation; and on-line
interaction with the operator. Mechanical testing, magnetic measure-
ments, and collecting and analyzing data from low-temperature convec-
tive studies are now routine. The system configurations used and the
benefits derived are discussed.

The vision of an automated laboratory has promise: computers
control equipment, collect data, and analyze and display results.
The experimenter, freed from tedium, devotes more energy to
creative pursuits, presumably research and development. Unfor-
tunately, the vision has proved to be a mirage for more than one
experimenter who, after a year of learning the mysteries of hardware
and software, finds the control of experiments as far away as ever.

This paper describes a system for laboratory automation using the
UNIX time-sharing system that has permitted experiments to be
automated in hours rather than years. This is possible because the

* UNIX is a trademark of Bell Laboratories.
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UNIX system makes programming easy, standardized hardware solves
many interfacing problems, and a library of programming tools per-
forms many common experimental tasks. The complex task of
automating an experiment reduces to the simpler tasks of assem-
bling hardware modules, selecting the appropriate combination of
software tools, and writing the program. The experimenter need not
know the details of how signals are passed from one hardware
module to another.

The benefits of automation are illustrated here by examples taken
from the laboratory. Among these are very precise data logging,
simplified operation of complex machinery or experiments, quick
display of results to the operator, easy interfacing to data analysis
tools or graphics, and ease of cross-correlating among experiments.

1. APPROACHES TO AUTOMATION

A variety of approaches have been made to the problem of labora-
tory automation. Systems can be designed for the job at hand, or
they can be designed to be multipurpose. A computer may be
devoted to a single experiment, or one computer may be shared
among several experiments.

1.1 Job-specific automation

One approach to automation is to tailor a system to a specific
problem, either by developing dedicated hardware or by developing
job-specific software. A modern digital multimeter affords a good
example. Some multimeters employ specially designed digital circui-
try to accomplish a myriad of operations (ac-dc voltage and current
readings, resistance, autoranging or preset scales, sampling times,
etc.), while others incorporate a microprocessor with specific
software to accomplish the same functions.

A drawback is that the design can be too specific. Changes in the
operation of the device can be made only by rewiring the circuit or
by rewriting the program. Since the operation of a digital multime-
ter changes slowly, the job-specific development is practical. If
enough instruments are sold to recover the high costs of specific
design, the approach is economical.

Larger examples of job-specific design are to be found in the auto-
mation of widely used scientific apparatus such as gas chromato-
graphs and x-ray fluorescence machines, where the high cost of
software and hardware can be amortized over many units and where
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the function of the apparatus changes slowly. Unfortunately, there
are other examples where the automation never quite worked prop-
erly or could not be changed to meet changing needs, and still oth-
ers where the high cost of developing the job-specific design was
never recovered.

1.2 Multipurpose automation

In fact, many cases of automation in research and on the produc-
tion line are antithetical to the conditions for job-specific develop-
ment. The tasks are varied, they change rapidly, and the number of
identical installations is small. Such applications are best served by a
system that is versatile and easily changed.

A system can be multipurpose only if the hardware and the
software are multipurpose. Flexibility in hardware at the module
level is illustrated by the multimeter, which performs a variety of
functions by virtue of the specific hardware and software it con-
tains. Hardware versatility at the system level is achieved by the
ease of interconnecting or substituting various modules, meters,
timers, generators, switches, and the like. Recently, standards for
interfacing instruments have been gaining acceptance. Many
modern instruments offer the IEEE instrument bus; I nuclear instru-
mentation follows the CAMAC standard2 which permits higher data
rates and larger numbers of instruments than the IEEE bus.

One might think that because typing is easier than soldering, it
should be easier to change software than to change hardware. How-
ever, the ease of changing software depends on the language at
hand, the quality of the editor, the file system structure, etc. The
very features of the UNIX time-sharing system that make it suitable
for system development3 also make it suitable for automating a
laboratory or a production line. Most of the work in automation is
in the software, and UNIX makes developing the software easy.

1.3 Multipurpose software

Software is changed more readily if it is well designed and cleanly
implemented. Quite small programs can meet a large number of
needs if they fit Kernighan and Plauger's description of a software
tool:4

it uses the machine; it solves a general problem not a special
case; and it's so easy to use that people will use it rather than

building their own.
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Naturally, such tools will not meet every need, but they will
serve for most tasks. They are usually easily modified to meet spe-
cial needs.

1.4 Stand-alone systems

An experiment can either have a computer devoted exclusively to
it or it can share the computer with other experiments. The stand-
alone approach has several virtues; chiefly, no one else can preempt
the computer at a crucial instant (real-time response) and no one
else's errors can cause the system to crash (independence). Real-
time response and independence must be traded off against the high
cost of hardware and software. While the cost of the central proces-
sor and memory have declined significantly in recent years, the cost
of terminals, graphics, and mass storage devices has remained high.

It should be remembered that most of the cost of automation is
in software development. The software development tools on most
stand-alone systems are primitive by UNIX standards and result in
substantially higher total development costs.

1.5 Shared systems

Connecting several experiments to a well-equipped central com-
puter shares the costs of expensive peripherals and may provide a
reasonable programming environment. Simple experiments which
do not require real-time response can be interfaced to a time-
sharing system directly. UNIX time-sharing can be used for this pur-
pose if the data rates are slow enough or if time delays can be
tolerated. For example, an x-ray diffractometer might be interfaced
as an ordinary time-sharing user since data are normally taken every
five seconds or so. If there is some delay due to the load on the
time-sharing system in positioning the diffractometer for the next
reading, nothing but time is lost.

Some central computers do provide a system which will guarantee
real-time response. The MERT system is an example of one which
provides a very sophisticated real-time environment aimed at users
capable of writing system level programs.5 Nevertheless, writing
programs for real-time response on a shared system is a complex
task that must be done with care because a single experiment can
bring down the entire system. In the past, big shared central com-
puters have been unsuccessful in controlling many experiments at
once, although recent reports indicate some success.6 In general,
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such a system is forced to rely on a small amount of very reliable
code to shield the users from one another and from the system.

1.6 Satellite processors

The real-time response and independence of a stand-alone system
can be combined with the lower costs and superior software of a
shared system if inexpensive, minimally equipped microcomputers
are connected to a large, well-equipped central processor. The
microcomputer or satellite processor (se) provides real-time
response and independence when the experiment is in progress; the
central processor (CP) provides data storage, an excellent program-
ming environment, and data analysis tools. Not only is the cost of
such a system significantly less than the cost of an equivalent
number of stand-alone systems, but the CP also provides time-
sharing services for data analysis and reduction, document prepara-
tion, and general-purpose computing.7' 8

II. SYSTEM DESCRIPTION

In our laboratory, we have automated several experiments with
the distributed processing system shown schematically in Fig. 1.
The cp provides UNIX time-sharing service to 16 incoming phone
lines and supports up to 16 sps for experimental control or as ordi-
nary time-sharing users.

2.1 The central computer

A Digital Equipment Corporation (DEC) PDP-11/45 with 124K of
core storage, cache, 80M bytes of secondary disk storage, and a tape
drive serves as the central computer. Graphics are provided by a
high quality terminal (Tektronix 4014) and a hard-copy printer
plotter (Versatec 1200A). Data can be transmitted to other com-
puter centers with an automatic calling unit and a 2000-baud syn-
chronous phone link.

The central facility is similar to an ordinary UNIX installation,
offering a wide range of time-sharing services. Like other UNIX sys-
tems, many jobs are program development or document prepara-
tion. An unusually large number of jobs are numerical analysis run
in Fortran or Ratfor9 or graphical displays using the UNIX graph
command. Fortran is used because of the availability of many
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Fig. I -Satellite processor system used for control of experiments.

mathematical subroutines, for example, the PORT library,10 or
because of inertia on the part of experimenters.

2.2 The satellite processor

Eight sPS are presently connected to this central facility, each con-
sisting typically of an LSI-11 microcomputer with extended arith-
metic, a 9600-baud CRT terminal, two serial line interfaces (one for
the CP and one for the terminal), a PROM/ROM board containing a
communications package, and from 8 to 28K of semiconductor
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memory. Because memory is inexpensive, most users choose more
than minimum storage.

2.3 The CP-SP interface

The sPs are linked to the cP by means of serial line interfaces
(see DL and DH in Fig. 1), operating over two twisted pairs of wires,
often 300m long.

The SP does not have the resources either in memory or secon-
dary storage to run the UNIX system directly. For a UNIX system
that will run on a microprocessor equipped with a floppy disk, see
Ref. 11. However, with the cooperation of the cP, the sP can emu-
late the UNIX environment during execution of a program, using the
Satellite Processing System (sPS).12

sps prepares a program, for execution in the SP, transmits it, and
monitors it during execution. If the program in the sP executes a
system call, it is sent to the CP for execution. In our experience,
sending all system calls to the CP proved burdensome, so we
modified srs so that the SP would handle system calls itself if possi-
ble, referring only those system calls to the CP which the CP alone
could handle. For example, reading and writing the local terminal
is best handled by the SP itself, whereas reading or writing a remote
file can only be done through the CP. Certain other system calls,
fork, for example, are simply not appropriate in the present distri-
buted processing framework and are presently treated as errors.
When no program is executing in the SP, the local terminal behaves
exactly as if it were connected directly to the CP under UNIX time-
sharing. Further revisions to the CP-SP communication scheme are
under way that should permit the SP to run a long-term program
acquiring data while the local terminal is used for ordinary time-
sharing.

Although SPS was designed to accommodate a variety of comput-
ers, cost considerations have led us to use LSI-11 microcomputers
exclusively. If future needs dictate a large computer, the capacity is
there, although the future may well bring bigger and faster satellite
machines.

2.4 Interface to the experiment

A surprising variety of experiments can be automated with the
interfaces shown schematically in Fig. 1.
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(i) The CRT terminal operating at 9600 baud provides interaction
with the operator at a speed high enough to permit messages
as explicit as needed without slowing the experiment down.

(ii) Voltage signals are read or generated by means of an ADAC
(Analog-to-Digitial Digital-to-Analog Converter). Connec-
tions are made through a standard multipin connector. From
8 to 64 lines can be used on input and two lines on output.
The usual range of voltage is 10 volts with a precision of
5 mV. The programmable gain option allows the precision to
be increased to 0.5 mV over a correspondingly smaller vol-

tage range.
(iii) Signals that are binary in nature can be interfaced with the

LSI DRV-11 parallel interface, which provides 16 input and 16
output lines. On output, pulses can be generated to step
motors, set relays, or trigger devices that respond to TTL Sig-
nals. On input, switch closure, TTL signals, and interrupts
can be monitored. The DR also provides a way to interface to
numeric displays or inputs. If the number of binary inputs is
large, several DRS can be employed.

(iv) Sophisticated instruments, such as multimeters, frequency
synthesizers, transient recorders, and the like, can be inter-
faced through the IEEE instrument bus.1 More than a hun-
dred instruments are available with the IEEE bus, and the
numbers have been increasing rapidly.

(v) Timing during the experiment can be accomplished with the
internal 60-Hz line time clock of the LSI-11 or by a more pre-
cise programmable clock, the KW- 11.

III. INTERFACE TO THE EXPERIMENTER

Our goal was to create an interface between the user and the
experiment which used the machine to do the dirty work, met a
variety of needs, and was so easy to use that people wouldn't try to
reinvent it-in short, to develop what Kernighan and Plauger
describe as tools, as opposed to special-purpose programs.4

Each interface described above is handled with one or more tools
summarized in Table I. Each is a function or series of functions
written in the C programming language13,14 which can be called
from a C program. The C functions can also be called directly from
programs compiled with the FORTRAN 77 compiler which is now
operational on UNIX.15 A tutorial discussion of the use of these
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Table I-Tools for experimental control

Interaction with the experimenter
rsvpO; number();

Data acquisition
getvolt (); setgain (); zero(); parin (); parintO;

Experimental control
outchanO ; putvolt(); ramp (); sine(); paroutO;

Timing and synchronization
time(); delayO; setsync (); sync();

Dynamic data storage
bputO; bgetO; bfreeO;

Sending data to the central computer
bsend O; bnameO;

tools is available16 which has served as the text for a 16-hour course
in computer automation.

3.1 Interaction with the terminal

The programmer can use two tools to ask a question of the opera-
tor and read the response: number which returns a floating point
number and rsvp which matches the response to a list of expected
replies. For example,

velocity = number (" ram velocity", " mm/sec");

will print the message

ram velocity , mm/sec?

on the terminal, analyze the response, and return a floating-point
number. If the input is unrecognizable, number repeats the mes-
sage . If the reply is "1 ft/min," a conversion will be made to
mm/sec, the units specified by the optional second argument. If
the units are unknown, e.g., furlongs/fortnight, an error message
will be printed and number will try again. It is possible for the user
to supply an alternate table of conversion factors for number.

A second tool is provided to ask the experimenter a question and
analyze the reply. The simplest use of rsvp is to use the terminal
to get a cue, as in:

rsvp (" Hit RETURN to start the test.");

which prints the message on the terminal and waits for the carriage
return to be typed. rsvp will analyze responses, as in:

reply = rsvp (" stress or strain ?", "stress", "strain");

which prints the first argument on the terminal as a prompt,
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analyzes the response, and sets reply to 1 if stress was typed, 2 if
strain was typed, and 0 if anything else was typed.

Because number and rsvp are reasonably intelligent and cautious
about accepting illegal input, they can be used to create other pro-
grams which are similarly gifted. For example, many experiments
require a knowledge of the area of the specimen under study. A
simple function can be written in a dozen or so lines which will cal-
culate the area from information supplied at the terminal for either
a circular or a rectangular specimen. The user can supply dimen-
sions in units ranging from yards to microns.16

Because rsvp and number use the standard I/O routines, they
run on the 11/45 as well as the LSI-11. Developing them was also
easy, because the hard part was done by UNIX library routines like
atof.

3.2 Interfacing with analog signals

Once the leads from the experiment are connected to the ADAC,
the voltage on the nth channel can be read by calling

getvolt(n);

The gain on channel n can be set to lOX by calling

setgain ( n, 10);

If this call is issued and the ADAC lacks programmable gain, or if
the desired gain is not available, setgain will print an error mes-
sage. In some experiments, it is convenient to take an arbitrary
reference voltage as a zero reference. Calling

zero(n);

will take the current voltage reading on channel n as the zero refer-
ence for all subsequent readings on channel n. All data returned by
getvolt will be in consistent internal units, so that the gain or zero
can be set independently by different routines.

Voltages can be generated with the function:

putvolt(v);

If there is more than one D-A, the function outchan can be
called to specify the channel for output. The following code causes
zero volts to appear on the two output channels.
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outchan(O);
putvolt(O);
outchan(1);
putvolt(O);

putvolt can be used in combination with the timing tools to create a
variety of signal generators or command signals. If the response to
the voltage command is measured with getvolt and fed back to the
command, closed loop control is possible. Examples of such con-
trol are given in a later section.

3.3 Parallel interfacing

The 16 output lines of the parallel interface can be written simul-
taneously by writing a 16-bit word with the call:

parout(n, word);

where n refers to the number of the DR interface board. The
binary representation of the word will determine which lines are on
or off. Since the C language provides a number of operators for bit
manipulation, the common operations of setting, clearing, or invert-
ing the ith bit can be accomplished easily.14

Similarly, the state of the 16 input lines on the nth DR can be
read simultaneously with the function:

parin(n);

which returns a 16-bit integer . The C bit operators are then used to
mask off the bits which correspond to the signals of interest.

The interrupt inputs on the DR can be used to signal the proces-
sor as described in a later section.

3.4 The IEEE instrument bus

The IEEE bus interface tools are still under development with the
goal of writing high-level commands that will interface to many
electronic instruments. At present, the instruments can be con-
trolled by the standard technique of writing or reading an ASCII
stream on the bus with reads and writes or the high level routines
scanf or printf. A command analogous to stty called buscmd()
sets the state of the bus driver.

MICROCOMPUTER CONTROL 2219



3.5 Timing

Events during the experiment can be timed by means of the
internal line time clock in the LS1 or by a higher precision pro-
grammable clock. In either case, the tools for timing remain the
same; the precision simply changes. The simplest use of the clock
is to measure elapsed time with the variable time which is incre-
mented each clock tick. Events can be synchronized with a clock by
the function sync(). A function setsync(t) is provided which sets
the period of the sync signal to t ticks of the clock. Subsequent
calls to sync() will not return until a sync signal is generated. In
this way, data can be obtained at regular intervals, or pulses of a
specified frequency can be generated. A third function delay(n)
causes the program to wait for n sync signals. The accuracy of the
timing functions is determined by the accuracy of the clock and
ultimately by the speed of the LSI-11, which seems to limit practical
timing to frequencies of less than about 10 kHz. In the future, fas-
ter processors may extend this limit.

3.6 Data storage and transmission

Many applications of computers to experiments are primarily data
acquisition and recording. The tools for storing data on the sP and
transmitting it to remote files on the CP are important. Therefore,
considerable effort has been spent on devising a set of commands
for storing data in buffers on the sP and transmitting the buffers to
named files on the CP.

A group of buffers are provided in which data can be stored
without regard to type (int, long, float, or double). The buffering
routines keep track of the type automatically. This is useful in stor-
ing data for an xy graph; n pairs of integers which form the data for
the graph could be stored in the same buffer as an initial pair of
double precision scaling factors which convert the integer data into
useful units. The entire buffer can be transmitted to the CP as a
unit. The buffers are dynamically allocated; that is, depending on
how the data are written, one buffer could consume all the buffer
space, or all the buffers could share the space. The command
bfree(n) releases the nth buffer whose space is then made available
for data storage by any of the other buffers. The command
bsend(n) sends the contents of buffer n to the CP. The function
bname() is used to specify the name of the file.
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The buffering commands can be used in combination to form a
sophisticated data logging system. For example, bsend can be
called periodically during data logging to update a file on the cp.
The transmission will be incremental; that is, only the data added to
the buffer since the last bsend will be transmitted. For applications
where more data are taken than will fit in the SP, large files can be
built on the CP by doing a bsend when the buffer fills, followed by
a bfree. Once the files are saved on the cP, the UNIX shell and pro-
grams can be used to manipulate or forward the data to yet another
computer facility for analysis on a higher speed computer.

3.7 Interrupt and signal handling

In the control of real-time experiments, it is sometimes necessary
for the experiment to interrupt the computer, as for example when
data collection is complete or an event of some urgency has
occurred. The UNIX system's signal and interrupt mechanisms are
rudimentary, as such events are rare in the fully buffered I/O
environment. The single-level interrupt structure of the LSI-11
further complicates the problem of handling interrupts generated by
the experiment. Our solution has been to implement a simple con-
trol primitive for doing all this, the EXECUTE command.
EXECUTE(routine, priority) allows the user to specify a routine to be
run when the software priority level of the program drops below the
given level. Because things normally considered atomic in nature
(floating-point arithmetic and system calls) may be extremely slow
when simulated on the LSI-11, it is advantageous to make them
interruptable at a high priority rather than atomic. To guarantee no
side effects, the interrupting routines must take care not to execute
non-reentrant code.

The user would not normally use EXECUTE directly but would use
parint( n, routine , priority) which handles interrupts coming in on
the nth DR interface. parint() can be used to turn off all interrupts
or name a routine to be EXECUTEd at the specified priority when an
interrupt occurs. For example, in the case of finding peaks in a
diffraction spectrum, it is advantageous to compute while data are
being collected by the counters, and be interrupted when the count
is completed. Such an interrupt could be executed at a relatively
low priority. If, on the other hand, an interrupt is received which
indicates that a disaster has occurred, it should be handled at the
highest priority.
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3.8 Notes on implementation

We have tried to design a software interface to experiments
which follows the UNIX unified approach to input-output (I/O), that
is, I/O should take place without regard to the type of device being
read or written. For example, the local terminal, remote files, or
the IEEE bus can all be read or written with standard I/O.

Using standard I/O provides additional benefits. Routines for the
IEEE bus were developed on the 11/45 and run on the LSI-11
without change. Development was much easier on the 11/45 where
pipes and a bus simulator were used to test the program before run-
ning on the LSI-11, without the added set of problems caused by
running on the unprotected LSI-11. The IEEE bus interface could
easily be used as a model for a UNIX device driver if the need arises.

I/O is handled in the modified sps framework by keeping a list of
device descriptors that represent local devices. Any system call for
a local device is handled without CP intervention; all others are
passed to the CP. The local terminal driver includes fully buffered
input and output, echoing, erase and kill processing, and interrupt
and quit handling.

A different approach is necessary for the devices on which a sin-
gle word or byte represents the entire transmission (DR or the
ADAC). These devices can be faster than the LSI-11 itself, so we
have kept the interface as low level as possible, thereby incurring
less overhead than would be the case if the standard I/O system
were used. We have tried to make the I/O as independent of the
device as possible, so that the user will not need to understand the
detailed operation of each device and so that similar devices can be
interchanged without changing the user programs.

Each SP has a unique combination of hardware which requires a
unique library of software tools to make it work. We are able to
compile such a library by specifying options to the C preprocessor at
compile time, so that the libraries can be prepared without changing
the programs or including redundant information.

IV. EXAMPLES

The measure of the system and the tools is to be found in their
application to actual experiments. The following examples are
experiments which are now running, using the system and tools
described above.
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Fig. 2-Servo-hydraulic control panel. The satellite processor is the small module in-
dicated by the arrow.

4.1 Mechanical testing

One function of computer automation is to simplify the operation
of a machine and shield the inexperienced user from its intricacy.
The complexity of the control module of a modern servo-hydraulic
machine is apparent in Fig. 2. The microcomputer, which controls
the machine, is the small module indicated by the arrow. As a sim-
ple example of the complexity of running an experiment without
computer assistance, the units of the stress strain curve being
displayed on the xy recorder in Fig. 2 are determined by the settings
of four potentiometers, the sensitivity of two transducers, and the
dimensions of the sample. Under computer control, the results are
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Fig. 5-Temperature gradient across a cell as a function of time . The gradient is pro-
duced by applying a power input to one plate of a cell filled with liquid He at 2.2 K.
The power is varied sinusoidally at first , then is held constant at the rms power level
of the sine , and then is shut off. See Fig . 6 for a magnified view of how the mean
temperature approaches steady state and Fig . 7 for the power spectrum of the
response.

the same time the response (the temperature gradient across the
cell) is recorded with getvolt and stored with bput. The resulting
gradient is displayed in Fig. 5. After a time the sinusoidal input is
replaced by a constant power input of the same mean power, and
the gradient is again monitored. The power is then shut off for an
interval and the process is repeated with a slightly higher power
density.

Figure 6 shows how the mean temperature gradient approaches
steady state for the sinusoidal input and the constant input. It
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Fig. 6-Mean temperature as a function of time. The data from Fig. 5 have been
averaged and magnified to show that the approach to steady-state conditions depends
on whether the input is oscillating or constant.

shows that the stability of the system depends on whether the input
is oscillating or steady. Still using data obtained with the LSI-11,
Ahlers applies fast Fourier transforms to reveal the details of the
instability (Fig. 7). The ability to write programs, control experi-
ments, analyze data with sophisticated mathematical library func-
tions, display it graphically, and write it up for publication on a sin-
gle system is a significant advantage.

Other applications under way or in progress include x-ray
diffraction, pole figure determination, scanning calorimetry, phonon
echo spectroscopy, thin-film reliability studies, and semiconductor
capacitance spectroscopy.
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Fig. 7-Power spectrum of the temperature gradient vs . time function . The response
to the sinusoidal power input is Fourier - transformed, and the corresponding power
spectrum is displayed . Note the peaks at the second and third harmonic , which were
not present in the power input.

V. CONCLUDING REMARKS

We have in operation a system for controlling laboratory experi-
ments which is powerful, easy to use, and reasonably general. It
combines the isolation and real-time response of a stand-alone sys-
tem with the shared cost and better hardware/software facilites of a
large time-shared system. It is powerful because the UNIX operating
system and the C language provide facilities for file manipulation
and the direct control of.devices. It is easy to use because tools
have been written which shield the novice from many of the inter-
facing details. It is general because the tools were written with gen-
eral, rather than specific, applications in mind. Where great speed
or specialization is necessary, the tools form a model that can easily
be modified to meet the needs.

For the future, we expect bigger and faster satellite microproces-
sors which will add further to the attractiveness of the satellite pro-
cessing scheme. As microprocessors become incorporated in test
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equipment, we see a trend toward more intelligent instruments
which, on command from the sP, can execute fast, complicated pro-
cedures without the SP's intervention. The test instrument should
be intelligent about performing its essential functions and should
provide an interface (eg. the IEEE bus) to a more general-purpose
machine which controls other tests, coordinates instruments, and
analyzes the results. Trends toward building full-blown software
systems including file systems into large test equipment seem coun-
terproductive.

As to the future of the software discussed here, we plan to revise
the CP-SP communications interface to take advantage of new UNIX
features to improve reliability, versatility, and speed. Further work
remains to be done on a set of higher level tools for interfacing
with instruments on the IEEE bus.
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need to rapidly obtain small numbers of prototype circuits. Ideally,
the designer would like to be able to draw and edit circuit schemat-
ics in machine-readable form so that checking, physical layout, and
prototype production are available at the touch of a button. Drafting
standards and (frequently) physical design efficiency are second in
priority to a fast turnaround. Automatic documentation and facili-
ties for making changes to earlier designs are also required.

To a significant degree, this ideal has been achieved for those
engineers who have access to a PDP-11 that runs the UNIX operating
system. The following four command programs are used:

draw
wcheck
place
wrap

to edit circuit drawings
to perform consistency checks on a circuit
to place components on a circuit board
to generate data for wire wrapping

All programs are written in the C language and the interactive
graphics terminal is a Tektronix 4014. Hard-copy output on paper
or microfilm is obtained through a Honeywell 6070. The Honeywell
6070 also produces the paper tape which drives a Gardner-Denver
14YN semi-automatic wire-wrap machine. Punched cards suitable
for use with a Gardner-Denver 14F automatic wire-wrap machine
are obtained by executing a program on an IBM 370. In each case,
use of the service machine is automatic and is possible through the
communications lines linking the PDP-11 to the Honeywell 6070 and
linking the Honeywell 6070 to the IBM 370.

The circuit design aid programs are intended for use with circuits
composed primarily of dual in-line packages assembled on wire-
wrapped boards. The intent is to provide the nonspecialist circuit
designer with a tool suitable for laboratory use. It is assumed that
the user's prime objective is to obtain an assembled circuit board
and maintain consistent documentation with a minimum of fuss. In
exchange, the user must be prepared to adopt some predefined con-
ventions and a rather restricted drawing style.

Logic diagrams are first prepared using draw . One file of graphic
information is constructed for each page of the drawing. When the
logic drawing is complete, the graphics files are processed to yield a
wire-list file. The user must now prepare a definitions file in which
the circuit board and circuit components are described. Library files
of definitions exist to simplify the task. The definitions file is a text
file prepared using the UNIX text editor. Next, the wire-list file and
the definitions file are fed to wcheck. That program performs a
number of consistency checks and generates a cross-reference
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listing . Any errors detected at this stage must be corrected in the
logic diagram, and the process is then repeated. When a correct cir-
cuit description has been obtained, the definition and wire-list files
are fed to place . That is an interactive program for choosing a cir-
cuit board layout. A drawing of the board is generated automati-
cally. In addition, placement information is automatically written
back into the logic drawings for future reference. Finally, the
definitions file and a wire-list containing the placement data are fed
to wrap , which generates the instructions necessary for wiring the
circuit board. For machine-wrapped boards , wrap produces the
appropriate paper tape or punched cards. Hard-copy printouts of the
logic diagrams, the circuit board, and the cross-reference listings
provide permanent documentation of the final product.

II. TERMINOLOGY AND CONVENTIONS

A circuit description contains two parts. A schematic drawing
shows the interconnection of components, while a text file describes
the physical properties of the components. Drawings prepared by
draw are held in drawing files with one file per page of a drawing.
These files have names that end in the page number and g. The
definitions file is prepared as ASCII text and is in Circuit Description
Language (CDL). It is CDL that the draw program generates when
asked to produce a wire list from the circuit drawing.

The terminology used in the circuit design aid programs is
described below. It will be seen that this terminology is oriented
toward integrated circuits and wire-wrap boards. However, with a
little imagination, the user will find that a wide range of "non-
standard" situations can be handled quite effectively.

signal The information that passes over a wire and is
carried by a net of wires.

special signal A signal that is distributed about the circuit
board by printed circuitry. Ground and vCC
often fall into this category.

chip A circuit component such as a NAND gate.
package The physical unit which houses one or more

chips. A dual in-line package is an example.
pin The point where a signal wire connects to a

chip.
board The physical unit on which packages are

mounted.
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Fig. 2-The Tektronix 4014 terminal displaying a circuit.

a starts a new line segment which joins onto an existing line.
Thereafter, striking the space bar extends the line to the current
cross-hair position. Line segments' drawn in this way are either ver-
tical or horizontal. Diagonal lines are drawn by using z instead of e.

It may seem illogical, but draw treats pins as part of a wire and
not part of a chip. A wire joins together a number of pins, and for
each pin one can specify a name and a number. Chips are drawn
separately and the association between chips and pins is made when
the wire list is constructed. For that association to be made, the pin
must lie within, or be very close to, a rectangle just large enough to
contain the chip.

Chips are usually represented by closed geometric forms such as
rectangles. To draw a chip it is only necessary to specify its shape
and use the cross-hairs to give its position. A rectangle is drawn if
no shape is specified. Two text strings can optionally be associated
with a chip: a chip name and a type name. In some cases the shape
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adequately identifies chip type and then no explicit type name need
be given. Both names are treated by draw as text to be written,
usually, within the drawing of the chip. An option, selected when
defining a new shape, allows one to specify where such text should

be displayed.
To define a new shape, the user first enters its name. A blank

screen is then presented on which the shape may be drawn at four
times the final scale. In this mode line end points must lie on
1/40-inch grid points (not the usual 1/10-inch grid) so that reason-
able approximations to curved lines can be made using straight line

segments.
By now it should be apparent that draw has little built-in intelli-

gence. For example, it does not have a repertoire of heuristics
designed to automatically route wires around chips or to minimize
crossovers. We judge that such heuristics are cumbersome to pro-
gram and rarely satisfactory in practice. Layout of the drawing is
entirely in the user's hands. However, a number of small conveni-
ences are provided to make the task moderately easy. For example,
chips are drawn by positioning the cross-hairs on the left-hand end
of the required centerline. Most chip shapes are symmetric about
the centerline, and the desired centerline position is frequently
known more accurately than any other point. Another convenience
is a command that draws a grid centered on the current cross-hair
position with grid points spaced at intervals specified by the user. In
this way, one can quickly and accurately place a series of equally
spaced wires or chips.

Editing facilities are equally unsophisticated. One can delete
specific wires, pins, chips, and other drawing features or one can
draw a rectangle around a group of components and delete them all
or move the rectangle with components inside. Rectangular sections
of the drawing can also be copied either to other parts of the draw-
ing or onto a file for inclusion in another drawing. The awkward
edits can be most quickly handled by redrawing some of the wires.
To facilitate this with minimum risk of error, the following tech-
nique is used. First, recall that each wire joins together a certain
collection of pins. The pins are part of the wire so far as draw is
concerned. Therefore, there is a mechanism by which the user can
remove all the lines of a wire without removing the pins. The pins
remain and are displayed as asterisks. A new series of lines can now
be drawn joining the asterisks together. In this way the possibility of
omitting a pin from the wire is minimized and, at the same time,
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the pin display provides an effective visual aid towards rapid selec-
tion of a new wire route.

Manipulation of the Tektronix 4014 thumb wheels is an acquired
skill. draw simplifies the task by not requiring high accuracy when
positioning the cursor. For example, when extending a horizontal
line only the vertical cross-hair need be accurately positioned.
When pointing at a wire, pin, or chip one need only be close to it,
not precisely over it.

It has been found that the speed with which one can use a graph-
ics terminal diminishes as the need to move one's eyes between
keyboard and screen increases. Ideally one should be able to watch
the screen and not the keyboard. However, it takes two hands to
operate a typewriter keyboard and one more to control the cross-
hairs. Since draw requires that the user type in signal and shape
names, some hand and eye movements are unavoidable. The
compromise that we have adopted requires a hand movement when
a name or number is typed but not when drawing takes place. In
particular, while drawing a wire one can keep the left hand in the
standard position for typing, while the right hand operates the
thumb-wheels. The thumb of the right hand also is used to strike
the carriage return key. Each drawing action is effected by striking a
single key which is in the region controlled by the left hand. Strik-
ing the carriage return terminates a drawing sequence.

The command

draw therm1.g

is used to initiate editing of the drawing held in the file therm1.g.
Hard copy output of that drawing is produced on the Calcomp
plotter by

draw - c therml.g

A wire list is generated by

draw -w therm1.g

and it is placed in a file called therm1 .w. The wire list is an ASCII
file in Circuit Description Language.

IV. CIRCUIT DESCRIPTION LANGUAGE

The Circuit Description Language was first designed as a con-
venient notation for the manual preparation of wire lists. As the
design aid programs were elaborated, their needs for information
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increased and the Circuit Description language grew. It is apparent
that further extensions to the language will be required as new capa-
bilities are added to the software package. Consequently, the Circuit
Description language has an open-ended structure.

A circuit description consists of command lines and signal descrip-
tion lines. The former have a period as the leftmost character, fol-
lowed by a one- or two-letter command. For example, the following
is a description of a 16-pin, dual in-line package.

.k DIP16 16 80 30

.kp 1 05/00 - 8 75/00

.kp 9 75/30 - 16 05/30

The first line gives the name of the package type, the number of
pins, and the dimensions (in hundredths of an inch) of the package.
The remaining two lines give the positions of the pins relative to
one corner of the package.

The description of a circuit is in four parts:

(i) Package Descriptions. A description of each package type.
(ii) Board Description. A description of the board, the sockets

and connectors mounted on it, and any special signals for
which there is printed circuitry on the wire-wrap board.

(iii) Chip Type Descriptions. A description of each chip type.
(iv) Wire List. A list of chips and the signals wired to them.

The commands used in each of these sections of a circuit description
are described briefly below.

(i) package type For each package type one must give its
physical size and the number of pins attached to it. For each
pin one must give the pin number and its coordinates. A
shorthand notation for describing the positions of equally
spaced pins is shown in the example above.

(ii) board The board name, number of sockets, and number of
1/0 connectors must always be provided. Additionally, one
can specify the relationship between the board coordinate sys-
tem as used in the circuit description and the coordinate sys-
tem used by a wiring machine.

(iii) socket Sockets differ either in size or in the range of pack-
age types that can be plugged into them. For each socket
type, one must list the package types that are acceptable and
board coordinates at which these socket types occur. For
example, the following two lines specify that there are 15
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next must always be parallel to one or the other of the board edges.
Diagonal wiring is not permitted. No constraints are imposed on the
number of wires that can be funneled through any section of the
board. The minimum wire route problem is similar to the traveling
salesman problem and the algorithms used by place are based upon
the work of Lin.1

The package placement routines are based upon the work of D. G.
Schweikert.2 Two routines are involved: One makes an initial place-
ment of packages not already placed anywhere on the circuit board.
The other takes those packages already assigned positions on the
board and attempts to improve matters by moving them around.
Both operate within the following constraints: Packages cover a rec-
tangular area of the board, and no two packages can be so placed
that the area covered by one overlaps the area covered by another.
Sockets can secure to the board only those packages listed in the
socket definition. No socket can hold more than one package, but it
may take several sockets to handle a large package. When a package
is placed in a socket, the origin of the package coordinate system is
made to coincide with the origin of the socket coordinate system
(i.e., the lower left-hand corners of the two rectangles are aligned).
If the package is larger than the socket, all other sockets falling
partly or entirely inside the package rectangle are "occupied" by that
package and cannot be used for another package. A connector
whose position on the board is always fixed also occupies a rectangu-
lar area of the board. A package cannot be placed so that it overlaps
the connector. These constraints are considerably more elaborate
than those used in other placement programs of which we are aware.
They are made necessary by the growing diversity in package sizes
and socket configurations.

place starts with the package placement indicated on the logic
drawings. It uses the Tektronix 4014 to display the current board
layout. Sockets and packages are represented as rectangles with
socket numbers and chip names written within them (Fig. 3). Using
the cross-hairs, one can point to a chip or socket and, by typing a
command letter, cause some change either in the display or in the
current placement. For example, one can move a package from one
socket to another, place an unplaced package, or remove a package
from the board. Other commands invoke the automatic placement
routines.

Each package can be in one of three states: It can be unplaced or
its placement may be either soft or hard. A soft placement is one
that can be altered by an automatic placement routine while a hard
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Fig. 3-Display of circuit board layout.

placement can be changed only by the user. An unoccupied socket
can be in two states: It can be available for placement or it can be
blocked. Packages cannot be placed in blocked sockets. Sockets are
blocked and unblocked by user command.

One quite successful method of obtaining a placement is to use
the automatic placement and improvement routines on selected
groups of packages or sections of the board. Between such optimi-
zations the user inspects the current placement, makes key moves,
and changes the soft/hard and blocked/unblocked states of sockets
and packages in preparation for the next use of the automatic rou-
tines. To assist with this process one can display an airline map of
the optimized wire route for wires connected to selected packages.
One can also obtain summary information such as the length of wire
required by the current placement. Another helpful display is the
original logic drawing with the current placement displayed on the
drawing for each chip. When a satisfactory placement has been
obtained, the drawing files can be permanently updated in this way.
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Fig. 4-Standard Logic semi-automatic wire-wrap machine.

A hard copy printout of the board layout can also be obtained from
place.

VII. WRAP: TO WIRE-WRAP A BOARD

Three different methods of wiring a circuit board are currently
supported: use of hand wiring, use of a Gardner-Denver 14YN
semi-automatic wiring machine, and use of a fully automatic
Gardner-Denver 14F wiring machine. Interfaces to two on-line
machines are under development. One, a Standard Logic WT-600
wiring machine, is an inexpensive semi-automatic device for making
wire-wrapped boards (Fig. 4). The other, a custom-made device, is
used to assemble circuits using a more recently developed wiring
technique called "Quick-Connect."3 Each requires a different style
of output from wrap . The format and information content of a
hand-wiring list was designed to suit a professional wireperson. The
semi-automatic machine reads paper tape and the more complex
automatic machine is driven by punched cards. The last of these
has been programmed by C. Wild4 and wrap simply transmits the
wire net data as input to C. Wild's program which runs on an
IBM 370.
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The wire list is produced by building a model of the circuit board
in which there is a data structure for each socket, chip, and pin.
Special signal nets are then broken up into many small nets by rout-
ing wires to the nearest special signal pin. On some circuit boards
the special signal pins are part of a socket in the position most com-
monly required by integrated circuit chips. Wires are not required if
the socket is used to hold a chip with standard format. However,
the special signal pin must be unsoldered if another type of chip
occupies the socket. This is one of the special cases that wrap han-
dles by modifying the circuit board model before generating the final
wire list.

VIII. IMPLEMENTATION

The design aid programs are written in the C language and, for
speed and portability, avoid use of floating-point arithmetic. The
only assembly code program is a subroutine that uses double-length,
fixed-point arithmetic to scale graphic vectors.

Standard operating system features are used. In particular, the
graphic terminal is connected as a normal character device that is
operated in RAW mode (no operating system interpretation of the

character stream).
Twenty separate programs communicate with one another using

temporary files. Standard programs such as sort and the shell are
also used in this way. The four command programs draw , wcheck,

place and wrap are steering programs that do the necessary
"plumbing" to connect together a number of subprocesses. The
main work load is performed by the subprocesses. In this way the
relatively complex tasks required for circuit design and analysis are
broken into manageable pieces.

Memory space requirements are further reduced by using as sim-
ple a data structure as possible. For example, the graphic editor
represents each chip and wire as a named list of points and shapes.
No attempt is made to store cross-reference information in the data
base if it can be computed directly. Thus the programs use memory
space efficiently and CPU cycles less so.

The largest programs are the drawing editor and the placement
program. The drawing editor requires 13,000 words of main
memory plus enough space to hold one page of a logic drawing.
Typical drawings occupy less than 3,000 words. The placement pro-
gram requires about 11,000 words of main memory plus space to
store a description of the physical characteristics of the circuit. The
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latter is approximately 3 words x the number of dual in-line package
pins plus 25 words x the number of packages (about 7,300 words
for 100 16-pin packages).

Communication with the computing center machines is controlled
by a single program whose arguments include the job control
language required for each particular purpose. Shell sequences con-
tain the job control instructions for standard tasks using the
Honeywell 6070. Different installations of the UNIX operating sys-
tem require different job control instructions and use different com-
munications facilities. By concentrating the communications func-
tions in one program, the task of installing the design aid programs
on different installations is simplified.

IX. CONCLUSION

The objective in preparing these design aid programs included the
hope that one day it would be possible to go automatically from
schematic circuit drawing to finished circuit board. We have come
close to achieving that objective for wire-wrapped boards. However,
there is a need to be able to make printed circuit boards from the
same circuit drawings. Some steps in this direction were taken in
the form of an experimental translator which converts between Cir-
cuit Description Language and Logic Simulation Language as used
by the LTX system.5
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UNIX Time-Sharing System:

A Support Environment for
MAC-8 Systems

By H. D. ROVEGNO
(Manuscript received January 27, 1978)

An integrated software system based on the UNIX* system has been
developed ,for support of the Bell Laboratories 8-bit microprocessor,
MAC-8. This paper discusses the UNIX in luence on the MAC -8 project,
the MAC-8 architecture, the software development and hardware proto-
typing system , and MAC-8 designer education.

1. INTRODUCTION

Today's microprocessors perform functions similar to the equip-
ment racks of yesterday. Microprocessor devices are causing a
dramatic shift in the economics of computer-controlled systems:
product costs and schedules are influenced more by the system
architecture and support environment than by the cost or speed of
the microprocessor itself. In recognition of this phenomenon, Bell
Laboratories has recently introduced a complete set of development
support tools based on the UNIX system for its 8-bit microprocessor,
MAC-8.1,2 This paper presents an overview of the MAC-8 architec-
ture and development system.3

Development of a microprocessor-based application consists of
two activities:

(i) Design, construction, and test of the application's hardware.
(ii) Design, construction, and test of the application's software.

* UNIX is a trademark of Bell Laboratories.

2251



The development support system described here assists the applica-
tion designers in both areas. For the hardware designers, a proto-
typing system that permits emulation as well as stand-alone monitor-
ing of the application's hardware is provided. For the software
designers, a high-level language (C), flexible linker-loader, and
source-oriented symbolic debugging are supplied. The combination
of these tools provides the application designer with a complete and
integrated set of tools for system design.

II. WHY UNIX?

At the outset of the MAC-8 development, it was recognized that
use of an embedded microprocessor would increase the complexity
and the scope of applications rather than simply lowering their costs.
The tools of the future were going to be programming, documenta-
tion, and simulation tools. Considered in this light, a UNIX4' 5 sup-
port environment was a natural choice. UNIX possessed many desir-
able attributes of a "host" environment by providing sophisticated
tools for program development and documentation in a cost-
effective and highly interactive system. There was already
widespread use of the UNIX system not only as a development vehi-
cle in the Business Information Systems Program,6 but also as part
of many "embedded" applications.

III. WHY C?

While the choices of host system and programming language(s)
are conceptually independent, there is obvious merit in the con-
sistency of languages and systems. The C language7 was an obvious
choice because it offers high-level programming features, yet also
allows enough control of hardware resources to be used in the
development of operating systems.

IV. MAC-8

The MAC-8 is a low-cost, single-chip, bus-structured, CMOs
microprocessor, whose architecture (Fig. 1) was influenced by the C
language. Its major features are:

(i) MAC-8 chip, packaged in a 40-pin DIP (dual in-line package),
which measures 220x230 mils and uses over 7000 transistors.
The chip combines the low power dissipation of CMOs with
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(ii) 16 registers in RAM (random access memory ) that are pointed

to by the register pointer (a MAC-8 on-chip register ). Because
of this, the full set of registers can be set aside and a new set
"created " by executing only two MAC - 8 instructions , which is

particularly useful to compiler function -call protocol.

(iii) 65K bytes addressable memory space with DMA (direct

memory access ) capability.
(iv) Flexible addressing modes: register , indirect , direct, auto-

increment , immediate , and indexed.
(v) Communication -oriented CPU (central processing unit) with a

wide variety of 8- and 16 - bit monadic and dyadic instructions,
including arithmetic , logical , and bit - manipulation instruc-

tions.
( vi) Flexible branch , trap , and interrupt handling.
(vii) Processor status brought out to pins, which permits monitor-

ing of CPU activity.

( viii) Internal or external clock.

Figure 1 is a block diagram of control. The major blocks are:

(i) Control Logic Array directs the CPU circuitry through the vari-

ous states necessary to execute an instruction.
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(ii) ALU, or Arithmetic Logic Unit, performs arithmetic and logi-
cal operations.

(iii) ALU Logic Array controls the operation of the ALU, managing
the condition register (CR) flags.

(iv) AAU, or Address Arithmetic Unit, computes the address in
parallel with the ALU operations.

(v) Programmable registers include the program counter (PC),
stack pointer (SP), condition register (CR), and register
pointer (RP).

(vi) Internal registers include instruction register (IR),
destination/source register (D/S), and temporary storage regis-
ter (T16).

V. DEVELOPMENT ENVIRONMENT

The MAC-8 development system (Fig. 2) is an integrated set of
software tools, including a C compiler, a structured assembler, a
flexible linking loader, a source-oriented simulator, and a source-
oriented debugger. All the tools except the debugger reside on

C
SOURCE

I
COMPILER

1

U
MEMORY LAYOUT

DIRECTIVES

fI

ASSEMBLER
SOURCE

ASSEMBLER

RELOCATABLE OBJECT MODULES

L

LINKER

f

PO

RUN TIME LIBRARYT
LOAD MODULE

SIMULATOR

Fig. 2-MAC-8 development system.
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UNIX; the debugger resides on a hardware prototyping system called
PLAID (Program Logic Aid).

The following sections present a brief discussion of each of those

tools.
There is a consistent user interface to all the tools that includes C

syntax input language, UNIX file-oriented inter-tool communication,
and names analogous to those of the corresponding UNIX tools, e.g.,

m8cc and m8as.

5.1 MAC -8 C compiler

The MAC-8 C compiler permits the construction of readable and
modular programs, due to its structured programming constructs,
high-level data aggregates, and a powerful set of operators. C is a
good language for microprocessors because it gives control over
machine resources by use of primitive data types such as register,
character, and pointer variables, and "machine-level" operators such
as indirection, "address of," and post/pre- increment/decrement.

5.2 MAC -8 assembler

The MAC-8 assembler is a conventional assembler in that it per-
mits the use of all hardware instructions; it differs from conven-
tional assemblers in the following ways:

(i) The language has C-like syntax as illustrated in Fig. 3. For

#define NBYTES 100
char array [NBYTES];
/•

Calculates sum of array elements

sum()

}

bO = &array;

al = 0;

for (a2 = 0; a2 < NBYTES; ++a2)
al =+ b0;
++b0;

}

Fig. 3-MAC-8 assembler example.
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example, a move instruction looks like a C-like assignment
statement. Data layout is accomplished by C-like declarations.

(ii) The language has structured programming constructs (e.g.,
if-else, for, do, while, switch) that permit one to write read-
able, well-structured code at the assembly level. Each con-
struct usually generates more than one machine instruction.

The reserved words in the language identify the MAC-8 registers
and also include many of the reserved words of the C language.
The #define and #include, as well as the other features of the C
preprocessor, are supported by the assembler.

5.3 MAC-8 loader

The diverse nature of microprocessor applications with their
different types of memories and, often, noncontiguous address
spaces requires a flexible loader. Besides performing the normal
functions such as relocation and resolution of external references,
the MAC-8 loader has the following features:

(i) Definition of a unit of relocation (section).

lowmem { f4.o(.text) }

.text (.=Ox100 )

.data { .=0x5000 )

.bss { .=0x8000 )

f1.0
f2.o

.bss {
. = (. + 7) & Oxfff8
_RPORG
f3.o(bss)
_SPORG = .-1

}

highmem {
= Oxa000

f3.o(data)
}

Fig. 4-Input specification.
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(ii) Assignment of values to unresolved symbols.
(iii) Control of the location counter within sections.

These additional features are specified by an input language that
has C-like syntax. For example, the input specification of Fig. 4 will
take the relocatable object files (output of the compiler or of the
assembler) of Fig. 5a and create the absolute binary output files
depicted in Fig. 5b. Fig. 5a consists of four files, the first three con-
taining three sections each, namely text, data, and bss, and the
last just text. _RPORG and _SPORG are unresolved symbols that will

f1.o

.text

.data

.bss

f2.o

f
.text

.data

.bss

f3. 0

f1. o (.data)

Q. o (.data)

(a)

.text

A

1-0

0000

0100

f4.o (.text)

f 1. o (.text)

f2.o (.text)

f3.o (.text)

5000

8000

f1.o (.bss)
.data

.bss

f4.o

.text

a000

FFFF

Fig. 5-Loader example.

f2.o (.bss)

f3.o (.bss)

Q. o (.data)

- RPORG

SPORG

(b)
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when (23'funcl 11 glo = = 4) {
if ( flag'funcl )

display i', w;
userblock;
continue;

}

else display ar'[0] : ar'[n], m'+6;

Fig. 6-MAC- 8 simulator example.

determine initial values of the register pointer and stack pointer,
respectively. The expression ._ (.+ 7 ) & Oxfff8 aligns the f3.o
(.bss) on a 8-byte boundary.

5.4 MAC-8 simulator

The MAC-8 simulator runs on the UNIX host system and permits
debugging of MAC-8 programs without using MAC-8 hardware. The
simulator is "source-oriented" and "symbolic," which means that
programs can be debugged by referencing variables and function line
numbers in terms used on the source listing (compiler or assem-
bler). The symbolic debugging permits the debugging of a C pro-
gram without worrying about the code generated by the compiler, as
illustrated in Fig. 6. The simulator also allows conditional execution
of pre-stored procedures of commands and the specification of C
expressions containing both user-program and debug symbols, mak-
ing possible the composition of debugging experiments in an interac-
tive fashion. The C-like input language minimizes the difficulties in
changing from one software tool to another. The major features of
the MAC-8 simulator are:

(i) Loading a program and specifying a memory boundary.
(ii) Conditional execution of code and semantic processing when

a break point is encountered.
(iii) Referencing C identifiers (both local and global) and C

source-line numbers on a per-function basis.
(iv) Defining a command in terms of other commands to mini-

mize typing.
(v) Displaying timing information.
(vi) Displaying items in various number bases.

(vii) Allocating non-program, user-defined identifiers.
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(viii) Execution of input commands read from a file on an interac-
tive basis.

(ix) Some structured programming constructs, including if-else
and while.

The command illustrated in Fig. 6 will cause a break point when

the program executes line 23 of function funci or

the global variable glo is equal to 4.

When the break point occurs, if the value of local variable flag of
function funci is non-zero, the values of local variable i and global
variable w are printed, the user-defined block userblock is exe-
cuted, and execution continues; otherwise the contents of local array
ar for subscripts 0 through n and the value of the expression m'+6
are printed.

5.5 Utilities

Utilities and a library are necessary parts of a support system. The
MAC-8 system not only has utilities (like the UNIX system) for deter-
mining the size of an object file and the contents of the symbol
table, but also a disassembler, a function line-number listing pro-
gram, and a program to format an object file to permit "down-line"
loading into the MAC-8-based application.

5.6 PLAID

A microcomputer-based application or target system typically
differs from the host system on which it was developed, particularly
in its periphery. Development of a microprocessor application
requires hardware /software tools that allow development and debug-
ging in real-time of the target processor and the periphery of its
application. The PLAID (Program Logic Aid) system described
below is such a tool.

The PLAID hardware includes two MAC-8 systems, each with full
memory, and an associated hardware monitor system in a
configuration that permits one MAC-8 system (the master) to closely
monitor and control the other MAC-8 (the slave). Each MAC-8 has
separate I/O, allowing connection to various peripheral devices from
the master, and to the application hardware from the slave. The
monitor hardware includes various debugging aids, as well as the
MAC-cable that allows in-circuit control of any MAC-8 system.
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The PLAID software system includes the Satellite Processor System
(sPS), which communicates with a host UNIX system, performing
operating system functions for the master and monitor hardware,
and m8db, a source-oriented symbolic debugger whose capability is
similar to the MAC-8 simulator with the addition of real-time break
points by use of the PLAID monitor system.

In the early stages of development, a fully-instrumented MAC-8
within the PLAID serves as the processor for the target machine,
where in later stages, the PLAID monitors and controls the prototype
system. Level-1 PLAID is illustrated in Fig. 7. Work is being done
on level-2 PLAID, illustrated in Fig. 8. The fundamental difference
in hardware between levels 1 and 2 is in the master system, which
in level 1 contains a 32K PROM (programmable read-only memory)
and a 16K RAM, while level 2 contains a 65K RAM and a dual-drive
double-density floppy disk. The SPS executive is replaced in level 2
by a single-user UNIX system; the debugger can be swapped in from
the floppy disk, as can other tools.

The satellite processing system of level 1, which is functionally
similar to the system described in Ref. 9, resides in the master and
controls the flow of program execution. SPS permits communication
with a host UNIX system via a dial-up connection, and performs the
operating system functions for m8db, such as control of the master
and monitor hardware. Any UNIX command can be entered at the
user terminal (see Fig. 7) and sps determines whether the command
will be processed by PLAID or must be transmitted to UNIX. The sPs
interface to m8db consists of UNIX-like system calls.

The PLAID-resident symbolic debugger, m8db, has a command
language which is a superset of the MAC-8 simulator. The additions
to the language permit the referencing of the PLAID monitor system
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hardware to establish real-time breakpoints . m8db has all the

features mentioned in Section 5.4, as well as facilities to help debug
programs in real time.

The MAC-cable is the channel of communication between the
PLAID and the application hardware, and permits control of the
MAC-8-based system. During the initial stages in the development
of an application, the MAC-cable permits testing out of the slave's
MAC-8 and memory, while using the application's I/O. As the
development progresses , the MAC-cable permits testing the
application's hardware, including its MAC-8 and memory.

The PLAID monitor system keeps track of the actions of the slave
or user system enabling the debugging of MAC-8 applications in a
real-time environment. The major features of the PLAID monitor
system include:

(i) Memory monitor contains a 65K by 4-bit dynamic RAM that

enables trapping ("break-pointing") on a variety of conditions

such as:
(a) Memory read, write, or reference.
(b) Arbitrary 8-bit pattern in memory.

(ii) Register monitor enables "break-pointing" on a read, write, or
reference of any of the MAC-8 off-chip registers (see Fig. 1).

(iii) CPU monitor contains shadow registers that hold the current
values of the slave/user MAC-8 on-chip registers (CR, SP, RP,
PC), as shown in Fig. 1.

(iv) Event counters consist of three 16-bit counters and one 32-bit
counter that enable "break-pointing" on a variety of events.
The events include:
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(a) Slave/user interrupt acknowledge.
(b) Slave CPU clock output.
(c) Slave/user memory read, write, or reference.
(d) Opcode fetch.
(e) Trap.
(f) User-supplied backplane signal.

(v) Jump trace contains a history table of the last 32 program
counter discontinuities.

(vi) Instruction trace consists of a 64-entry trace table of the last 64
cycles executed by the slave.

(vii) Memory access circuitry permits the selective specification, on
a block (256 bytes) basis, of read/write protection. Memory
timing characteristics can also be specified on a block basis.

(viii) Clock frequency for the slave can be selected from a list of
predefined frequencies.

VI. DESIGNER EDUCATION

Because of the nature of microprocessor applications, designers
must have both hardware and software expertise. Many hardware
designers must write programs for the first time, which poses an
interesting educational problem. C is a difficult language for
nonprogrammers because it is both powerful and concise. This
problem can be partially remedied by giving seminars and supplying
tutorials on C and on programming style. Offering workshops on
the hardware and software aspects of the MAC-8 has also helped.

The MAC-tutor, an "electronic textbook," enables the designer to
learn MAC-8 fundamentals. The MAC-tutor is a single-board com-
puter with I/O and can be communicated with by a 28-function
keypad or by a terminal. A connection to a UNIX system can also be
established for use in loading programs and data into the MAC-tutor
memory. The MAC-tutor also includes an executive to control
hardware functions, 1K RAM expandable to 2K, sockets for three 1K
PROMS, eight 7-segment LED displays, a PROM programming socket,
and peripheral interfaces to a terminal and a cassette recorder. The
tutor, besides being an educational tool, may be used to develop
small MAC-8-based applications.

VII. SUMMARY

The MAC-8 was designed together with an integrated support sys-
tem. The MAC-8 architecture was influenced by the C language, and
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the support tools were influenced by UNIX. The consistent use of
C-like language syntax permits easy transition from one tool to
another . Software tools that began , in many cases , as spinoffs of
existing UNIX tools have evolved to meet the needs of microproces-
sor applications . The MAC-8 support system continues to evolve to
meet the growing needs of microprocessor-based applications.
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UNIX Time-Sharing System:

No. 4 ESS Diagnostic Environment
By S. P. PEKARICH

(Manuscript received December 2, 1977)

Maintenance and testing of the Voiceband Interface and the Echo
Suppressor Terminal in No. 4 ESS are aided by software in the IA pro-
cessor. A No. 4 ESS diagnostic environment was needed during the
development phase of both the hardware and diagnostic software. The
minicomputer chosen to support this environment was also required to
support the development of more than one frame at the same time.
Because of this requirement and other reasons, the UNIX* operating sys-
tem was selected for software support and development. This paper
describes how the UNIX operating system was applied to this project.

1. INTRODUCTION

Software in the IA processor is used to maintain and test the
Voiceband Interface and the Echo Suppressor Terminal in No. 4
ESS.1 These testing programs were written in a high-level language
oriented to the special requirements of diagnostics in an ESS
environment. A No. 4 ESS diagnostic environment was needed dur-
ing the development phase of both the hardware and diagnostic
software. Digital Equipment Corporation's PDP-11/40 minicomputer
and the UNIX operating system2 were chosen to support this environ-
ment.

* UNIX is a trademark of Bell Laboratories.
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II. VOICEBAND INTERFACE AND ECHO SUPPRESSOR
TERMINAL

The Voiceband Interface3 (vIF) provides an interface between
analog transmission systems and the digital time-division switching
network of No. 4 ESS.4, 5 A VIF contains up to seven active and one
spare Voiceband Interface Units (vin's). Each viu terminates 120
four-wire, voice-frequency analog trunks and performs the analog-
to-digital and digital-to-analog conversions necessary for interfacing
with the time-division network.

The Echo Suppressor Terminal6 (EST) is inserted (when required)
between the VIF and the time division network. Through use of
digital speech processing techniques and by operating in the multi-
plexed DS120 bit stream, the EST achieves about a 10:1 cost reduc-
tion over the analog echo suppressor it replaced.

III. MAINTENANCE OF VIF AND EST

Maintenance software for No. 4 ESS7' 8 can be functionally divided
into three categories:

(i) Detect and recover from software malfunctions.
(ii) Detect and recover from hardware faults.

(iii) Provide error analysis and diagnostic programs to aid
craftspersons in the identification and replacement of faulty
modules.

This paper discusses how the UNIX operating system was applied to
aid the development of diagnostic programs for VIF and EST.

Figure 1 shows the maintenance communication path between the
IA processor and the VIF and EST. The IA processor issues mainte-
nance commands to the VIF through maintenance pulse points from
a signal processor.5 The VIF replies to the IA via the peripheral unit
reply bus (PURE). The EST communicates with the IA through a
full peripheral unit buss (PUB). EST commands are issued from the
1A via the peripheral unit write bus (PUwB), and the replies return
by way of the PURB.

IV. NO. 4 ESS DIAGNOSTIC ENVIRONMENT UNDER THE UNIX
SYSTEM

During the hardware and diagnostic software development phase
of both the VIF and EST, a No. 4 ESS diagnostic environment had to
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be supported. Since a 1A processor was not available for the
development of VIF and EST, a minicomputer was used to simulate
the diagnostic functions. Figure 2 shows the No. 4 ESS diagnostic
support environment which was created. Special hardware units
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were developed to provide electrically compatible interfaces
representing the peripheral unit bus and the signal processor mainte-
nance pulse points. These units are controlled by the minicomputer
through standard computer interfaces. The minicomputer then per-
forms the diagnostic functions of the IA processor in a No. 4 office.
By issuing commands to the special interface units, the minicom-
puter simulates the IA processor's transmission of diagnostic
instructions to the individual frames. The majority of the diagnostic
software for VIF and EST was developed in this diagnostic environ-
ment.

Software development began under the disk operating system
(Dos), supplied by the vendor. DOS is a "single-user" system; that
is, only one software designer can use the machine at any given
time. This limitation was acceptable early in the project when all the
computer time was dedicated for software development. However,
as support software became available, the hardware and diagnostic
software test designers became heavy users of the system.

At the start of the project, it was realized that the minicomputer
system was required to support more than one frame. In addition,
support software development effort was still continuing, which now
presented a problem in scheduling the minicomputer system. Two
alternate solutions were considered. The first was to purchase
another minicomputer to support the development effort on the
second frame. A disadvantage of this proposal was that one of the
minicomputer systems still had the scheduling problem with support
software development and with supporting the frame. Also, sup-
porting additional frames would cause the problem to arise again.
The second alternative was to upgrade the minicomputer system so
that it could support time-shared operations. This seemed a more
economical way of supporting additional frames and support
software development. The second alternative was chosen.

Two time-sharing systems were available for the PDP-11 computer,
UNIX and RSX-11. The RSX-11 system was basically the single-user
DOS, upgraded to support multiple users. Its main advantage was its
upward compatibility with programs developed under DOS. The
UNIX operating system, on the other hand, offered a better develop-
ment environment and more support software tools than DOS. The
C language was also available, which presented a very attractive
alternative for developing new software. These advantages
outweighed the disadvantage of having to modify the existing
software developed under DOS. Therefore, the UNIX operating sys-
tem was selected to support this project.
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V. THE SOFTWARE SYSTEM

Figure 3 is a block diagram of the overall software system used to
support the No. 4 ESS diagnostic environment. It consists of an off-
line compiler for a special diagnostic programming language
(described below), a run-time monitor for execution and debugging
of diagnostic programs, an on-line compiler for hardware and
software debugging aids (denoted as Operational Control), and sup-
port programs for creating and maintaining the diagnostic data base.
The entire software system on the minicomputer was named PADS
(PDP-11 Aided Diagnostic Simulator).

5.1 DIAL compiler

DIAL (Diagnostic Language)8 is a high-level programming
language that allows a test designer to write a sequence of test
instructions with data using macro calls. The language was
developed to meet the special requirements of diagnostics in the ESS
environment. DIAL statements can be divided into two classes: test-
ing statements and general purpose statements. Testing statements
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are used to issue maintenance commands to a specified peripheral
unit in a No. 4 ESS office. The general purpose statements are simi-
lar to most other high-level languages. They manipulate data, do
arithmetic and logical functions, and control the program execution
flow. The diagnostic programs for both the VIE and EST were written
in DIAL.

Several DIAL compilers are available to diagnostic program
designers. Each compiler produces code for a different application.
The compilers of interest to the VIF and EST test designers are the
DIAL/ESS and the DIAL/PADS compiler. The DIAL/ESS compiler,
developed using the TSS SWAP (Switching Assembler Program),9
produces a data table which is interpreted by a diagnostic control
programs in the No. 4 ESS office. The DIAL/PADS compiler,
developed using VMSWAP (Virtual Memory SWAP), produces code
for a PDP-11. This compiler, which runs on the IBM 370 computer,
produces PDP-11 assembly language source code which is acceptable
to the UNIX assembler. The assembly language code is subsequently
transported to the UNIX file system where it is assembled. The
resultant object modules are usable with the run-time monitor in
PADS.

Consideration was given to implementing the DIAL/PADS compiler
directly on the UNIX system. This would have eliminated the need
for the IBM 370 computer in the diagnostic development effort. All
software development could have been performed on the UNIX sys-
tem. However, because of the lack of the necessary staff and com-
puter resources, this approach was abandoned.

5.2 No . 4 ESS run -time environment

The PADS system allows the test designer to execute a DIAL pro-
gram with the aid of a run-time monitor and debugging software
package called DCON (Diagnostic Controller). The debugging pack-
age in DCON provides a tool for evaluating diagnostic algorithms and
debugging DIAL programs. DCON facilities allow the user to:

(i) Trace the execution of DIAL statements.

(ii) Pause before execution of each DIAL statement.
(iii) Pause at DIAL statements selected at run time.
(iv) Display and modify simulated IA memory during a pause.
(v) Start execution of the DIAL program at any DIAL statement.
(vi) Skip over selected DIAL statements at run time.

(vii) Loop one or a group of DIAL statements at run time.
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This last feature was especially useful for hardware troubleshooting.
Using this debugging package, the test designer can follow the exe-
cution of a DIAL program while it is diagnosing the VIF or EST.

DIAL programs compiled by the DIAL/PADS compiler communicate
data and status information to the diagnostic controller program.
Under DOS, this communication link was established at run-time via
the PDP-11 "trap" instruction. After switching to the UNIX operating
system, the "emulator trap" (emt) instruction was used. The DCON
process used the signal () system call to catch the emt instruction
executed by the DIAL program. However, because of the large
number of emt instructions executed in the DIAL program and the
operating system overhead to catch and handle this signal, this
method of dynamic linking between DCON and DIAL programs had to
be abandoned. It was replaced by the jump subroutine instruction
and loading a register with an address at run-time.

Maintenance instructions are sent to the VIF and the EST through
general purpose I/O ports (DRIICS) on the minicomputer. Origi-
nally, DCON relayed the maintenance instructions of DIAL programs
using the read () and write () system services of the UNIX operating
system. Before executing a DIAL program, DCON opened the
appropriate files (general purpose I/O ports) and retained their file
descriptors. All subsequent maintenance instructions requested by
the DIAL program were handled by DCON as read () or write()
requests to the file. Measurement of the I/O activity on these ports
revealed that the VIF diagnostic program sent a large number of
maintenance instructions. Hence, a large portion of the diagnostic
run time was operating system overhead. Based on this observation,
special system service routines were added to the UNIX operating
system. These routines directly read and write the general purpose
I/O ports. After implementing the I/O for maintenance instructions
in this manner, the run time for the VIF diagnostic was reduced by
more than half.

The PADS system simulates the automatic running of diagnostics
as performed in a No. 4 ESS office. A complete diagnostic for a peri-
pheral unit is normally written in many functional blocks called
phases. Each phase is a self-contained diagnostic program designed
to diagnose a small functional part of the unit. The phases of the
diagnostic program are stored as load modules in the UNIX file sys-
tem. The PADS system automatically searches the directory contain-
ing the diagnostic phases for the peripheral unit. Each phase is
loaded into memory by PADS and execution control is given to it.
At the termination of each phase, control is returned to the run-
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time monitor program which will determine the next phase to be
executed. The diagnostic phases for different frames are stored in
separate subdirectories. The files are named using a predefined
naming convention. This allows DCON to automatically generate the
file name for the next diagnostic phase to be loaded and executed.

5.3 Support programs

The output from the DIAL/PADS compiler is UNIX assembler
source code. The DIAL assembly source code is placed on a mag-
netic tape for transport to the PDP-11 system. A shell procedure on
the UNIX system reads the tape and invokes the UNIX assembler.
The output from the assembler is then renamed to the file name
supplied by the user in the shell argument.

The UNIX shell program10 is also used to interpret shell procedure
files which simulate the automatic scheduling of diagnostics in the
central office. These procedure files call special programs which
monitor the equipment for a fault indication. After a fault is
detected, the shell procedure calls in the DCON program to run the
frame diagnostics.

5.4 On- line diagnostic aids

A software package known as "Operational Control" was
developed under the UNIX system using the C compiler.I1 This pro-
gram allows the user to issue operational commands to the frame by
typing in programming statements at his terminal. These statements
are compiled directly into PDP-11 machine code and may be exe-
cuted immediately. Test sequences may be developed directly on-
line with the frames. These programs can then be saved in files for
future usage. This last feature was extremely easy to implement in
the UNIX operating system. By altering the file descriptor from stan-
dard input or output to a file, common code reads and writes the
program from the terminal or a file.

The parser for the Operational Control language is recursive. This
type of parser was exceptionally easy to implement in C since the
language allows recursive programming. The management of
storage variables needed by the parser in recursive functions was
automatically performed by the C compiler. This would have been a
horrendous bookkeeping operation if a nonrecursive programming
language had been used. The block structuring features of C made
it easy to implement the parser from the syntax definition of
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Operational Control. Using C, the on-line compiler was defined,
implemented, and operational within a short time period.

VI. UNIX SYSTEM SUPPORT

The UNIX time-sharing system enables the minicomputer system
to support more than one frame at a time. Each frame has a dedi-
cated, general-purpose I/O port from the computer. The user sup-
plies the frame selection information to the controlling program
(either DCON or Operational Control). Then the software opens the
appropriate I/O port for future communications with the frame.

Another feature provided by PADS is to allow the diagnostic
debugging program to escape to the on-line compiler program. This
is done in a manner such that when the user exits the on-line com-
piler, he immediately returns to DCON at the state at which it was
left. This feature was very easy to implement under the UNIX
operating system. By using the fork() and exec() system calls, the
parent program (DCON) sleeps, waiting for the death of its child pro-
cess (Operational Control). When the user exits from Operational
Control, DCON is awakened and will continue its execution from the
last state it was left in. The concept of placing one process to sleep
and invoking another was not available on RSx-11.

VII. SUMMARY

The UNIX time-sharing system had many advantages over the

RSx-11 system that was considered for the PADS system. Originally,

PADS was developed under Digital Equipment Corporation's single-

user Disk Operating System (DOS) using the macro assembler

MACRO-11. When it became apparent that a second frame had to be

supported, a time-sharing system was considered. At that time only

two time-sharing systems were available for the PDP-11 computer,

UNIX and RSX-11.

DEC's RSX-11 system is a disk operating system which supports
multiple users. The basic advantage of RSx-11 was its upward com-
patibility with programs written to run under the disk operating sys-
tem. However, this advantage was outweighed by the advantages
the UNIX operating system presented.

In our opinion, the UNIX operating system provided a much better
software development environment for our purpose than RSx-11. In
particular, the C language is much better suited to systems program-
ming than a macro assembler or Fortran. Also, many excellent
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software tools such as the text editor and the linker existed on the
UNIX system. For example, it was felt that with the aid of the text
editor, all the programs that were written in MACRO-11 assembly
language could easily be translated into the UNIX assembler
language. This allowed the existing software to come up under the
UNIX system in a short time period. Then, as time allowed, the
existing software could be rewritten in C. All future software was
slated to be written in C. The need to rewrite the software gave an
opportunity to rethink the entire software project, this time with
some experience. In the end, this led to vast improvements in the
software packages.
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UNIX Time-Sharing System:

RBCS/RCMAS-Converting to the
MERT Operating System

By E. R . NAGELBERG and M . A. PILLA
(Manuscript received February 3, 1978)

The paper presents a case history in applying the MERT executive to a
large software project based on the UNIX* system. The work illustrates
some of the basic architectural differences between the MERT and UNIX
systems as well as the problems of portability. Emphasis is on matters
pertaining to software engineering and administration as they a ect
development and support of a manufactured product.

1. INTRODUCTION

The Record Base Coordination System (RBCS) and Recent Change
Memory Administration System (RCMAS) are two minicomputer-
based products designed to carry out a record coordination function;
i.e., they accumulate segments of information received from various
sources on different media, filter, translate, and associate related
data, and later transmit complete records to downstream user sys-
tems, also on an assortment of media and according to various
triggering algorithms. The overall objective of record coordination is
to assure that information stored and interchanged among a variety
of related systems is consistent and accurately reflects changes that
must continually occur in the configuration of a large, complex
telecommunications network. To perform this function, RBCS and

* UNIX is a trademark of Bell Laboratories.
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RCMAS both provide various modes of I/O, data base management,
etc., and each utilizes a rich assortment of operating system features
for both software development and program execution.

The RBCS project was initially based on the UNIX system, I making
use of its powerful text processing facilities, the C language com-
piler,2 and the program generator tools Yacc and Lex.3 However,
after a successful field evaluation, but just prior to development of
the production system, it was decided to standardize using the
MERT/UNIX* environment.4 To a very large extent, this decision
was motivated by the genesis of a second project, RCMAS, which was
to be carried out by the same group using the same development
facilities as RBCS, but which had much more stringent real-time
requirements. The additional capabilities of the MERT executive,
i.e., public libraries and powerful inter-process communication using
shared segments, messages, and events, were attractive for RCMAS
and, even though the RBCS application did not initially utilize these
features, the MERT operating system was adopted here as well for
the sake of uniformity.

The purpose of this paper is to present what amounts to a case
history in transporting a substantial application, RBCS, from one
operating system environment, the UNIX system, to another, the
MERT/UNIX system. It is a user's view in that development and
ongoing support for the operating system and associated utilities
were carried out by other organizations. Of course, these programs
were also undergoing change during the same period as the RBCS
conversion. On the one hand, these changes can be said to con-
found the conversion effort and distort the results, but on the other
hand a certain level of change must be expected and factored into
the development process. This issue is referred to later as an impor-
tant consideration in determining system architecture.

The paper begins with a discussion of the reasons for choosing a
UNIX or MERT/UNIX environment, followed by analysis of the deci-
sion to utilize the MERT executive. The transition process is
described, and a section on experience in starting with the MERT sys-
tem, for purposes of comparison, is added. Throughout, the
emphasis is on matters pertaining to software engineering and
administration as they affect development and support of a manufac-
tured product.

*MERT executive, UNIX supervisor program.

2276 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1978



II. WHY THE UNIX AND MERT/UNIX OPERATING SYSTEMS?

With the exception of the interprocess communication primitives,
the UNIX and MERT operating systems appear to the user as fairly
equivalent systems. In large part, this is due to (i) the implementa-
tion of the UNIX system calls as a supervisory process under the
MERT executive and (ii) the ability to use existing C programs such
as the UNIX editor and shell with no modifications. Throughout this
paper, unless emphasis of a particular MERT/UNIX feature is
required, the phrase "UNIX operating system" will be used to mean
the stand-alone UNIX operating system as well as the UNIX supervisor
under MERT.

The facilities which the UNIX system provides for text processing
and program development, the advantages of a high-level language
such as C, and the power of program generators such as Yacc and
Lex are described elsewhere in this issue. All these were factors in
the final decision. However, the most compelling advantage of the
UNIX system was the shells program, which permitted the very high
degree of flexibility needed in the RBCS project.

Because of the important role of field experience in the design
process, developing a system such as RBCS or RCMAS is difficult,
since a complete specification does not exist before trial implementa-
tion begins. Recognizing this fact, the developing department
decided to make heavy use of the UNIX shell as the primary mechan-
ism for "gluing together" various utilities. Use of the shell allows
basic components to be bound essentially at run-time rather than
early in the design and development stages. This inherent flexibility
permits the system designer to modify and/or enhance the product
without incurring large costs, as well as to separate the development
staff into (i) "tool" writers, i.e., those who write the C utilities that
make up the "gluable" modules and (ii) "command" writers who
are not necessarily familiar with C but do know how a set of
modules should be interconnected to implement a particular task.

In actual practice, some overlap will exist between the two groups
if for no other reason than to properly define the requirements for
the particular C utilities. The RBCS and RCMAS developments fol-
lowed this approach and the evaluations of the projects overwhelm-
ingly support the ease of change and administration of features. The
response of the end users to the RBCS field evaluation system, in
particular, has been most encouraging. In fact, they have written a
few of their own shell procedures to conform more easily to local
methods without having to request changes to the standard product.
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In addition to the shell, heavy use of both Yacc and Lex was
made to further reduce both projects' sensitivity to changes of either
design or interface specification. For example, some processing of
magnetic tapes for RBCS has been accomplished with parsers that
produce output to an internal RBCS standard. For RCMAS, various
CRT masks are required for entry and display of important informa-
tion from its data base. An example is shown in Fig. 1. These
masks, being character strings tailored to the format of the specific
data to be entered or displayed, lend themselves very naturally to
design and manipulation using Yacc and Lex program generators.
This allows rapid changes (even in the field) to the appearance of
the CRT masks without incurring the penalty of modifying the
detailed code for each customized mask.

Documentation for manufacture and final use was provided using
the nroff6 text formatting system. In addition, to make the system
easier to use and to obtain uniformity of documentation, the UNIX
form7 program was utilized to provide templates for the various doc-
umentation styles.

With two development projects, short deployment schedules, and
limited computer resources in the laboratory, it was necessary to
develop, test, and manufacture software on the same machine. The
software engineering required to support such simultaneous opera-
tions would have been difficult, if not impossible, without the vari-
ous UNIX features.

III. WHY THE MERT SYSTEM?

If the UNIX operating system performed so well with its powerful
development tools and flexible architecture possibilities, why, then,
was RBCS converted from the UNIX to the MERT operating system
and RCMAS directly developed under the MERT operating system?
To answer this question, it is important to examine the underlying
software engineering and administration problems in a project such
as RBCS.

The organization responsible for end-user product engineering and
design for manufacture should regard themselves as users of an
operating system, with interest centered around the application. Once
end-user requirements are defined, architectural and procedural
questions should be resolved at all levels (i) to minimize change
and (ii) to avoid the propagation of change beyond the region of
immediate impact. Once the development is under way, changes of
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any sort are undesirable if adequate administrative control is to be
exercised, schedules met, and the product maintainable.

The nature of the RBCS project, however, necessitated changes to
the UNIX operating system in three important areas: (i) a communi-
cations interface to support Teletype Corporation Model 40 CRTs,
(ii) multifile capability for magnetic tape (e.g., standard IBM-labeled
tapes), and (iii) interprocess communication for data base manage-
ment. It was the problem of satisfying RBCS requirements in these
areas under an ever-increasing rate of modifications to the "stan-
dard" UNIX system that led to a consideration of the MERT operating
system.

Figure 2 graphically illustrates the problem of making slight
modifications to the executive program of the UNIX operating sys-
tem, especially in the area of input/output drivers. Because the
UNIX system, including all drivers, is contained in a single load
module, any modifications, even those at the applications interface,
require careful scrutiny and integration, including a new system gen-
eration followed by a reboot of the system. On the other hand,
referring again to Fig. 2, modifying a driver in a MERT environment
is considerably easier because of the modular architecture of the
MERT executive. In particular, the MERT executive is divided into
several components, which can be administered and generated
separately, frequently without a reboot of the system.

The experience over an 18-month period with the MERT operating
system is that no RBCS or RCMAS driver was affected by changes to
the MERT system. RBCS modifications to the magnetic tape and com-
munications drivers were frequently tested without generating
another system and, quite often, without rebooting. The advantages
of not having to regenerate or reboot become obvious after a few
iterations of change.

Furthermore, as shown in the encircled area of Fig. 2, it should
be feasible, ultimately, for a project such as RBCS or RCMAS to
receive the UNIX supervisor, MERT file manager, and MERT executive
as object code rather than as source code. Both RBCS and RCMAS
change only sizing parameters in these modules; such parameters
could be administered after compilation, thus freeing a project from
having to track source code for the major portions of the operating
system.

With regard to interprocess communication, the translation and
data-base management aspects of RBCS place a heavy strain on any
operating system, but on the UNIX system in particular. For exam-
ple, since the UNIX system was designed to provide a multi-access,
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time-sharing environment in which a number of independent users
manipulate logically separate files, a large body of common code,
such as a data base manager, could only be implemented via a set of
subroutines included with each program interacting with the data
base. With such a structure, no natural capability exists to prevent
simultaneous updates, and special measures become necessary. In
general, it is difficult to allow any asynchronous processes (non-
sibling related) to communicate with each other or to synchronize
themselves without modifying the operating system or spending
inordinate amounts of time with extra disk I/O.

Several measures were taken to try to overcome these limitations.
Where sibling relationships existed by virtue of processes having
been spawned by the same shell procedure or special module, UNIX
pipes could be used, but these are quite slow in a heavily loaded sys-
tem. Where nonsibling related processes were involved, specialized
file handlers had to be used since large amounts of shared memory
(within the operating system) were out of the question. It is impor-
tant that the shared memory be contained in user space since
different applications, at different points during processing, may
place inordinate demands on a system-provided mechanism for shar-
ing memory. This point is discussed further in the next section.

After considerable experience with the RBCS field evaluation, the
time came to incorporate what had been learned and design a pro-
duction system. It became quite clear that interprocess communica-
tions was our primary bottleneck and that this would be even more
the case for RCMAS. An operating system was needed that could (i)
support better interprocess communication than the UNIX operating
system, (ii) support feature development (modifications to the
operating system) without tearing into the kernel of the system or
unnecessarily inconveniencing users by system generations, reboots,
etc., and (iii) still provide the powerful development tools of the
UNIX system. The MERT operating system met these three criteria
quite satisfactorily.

IV. CONVERTING TO THE MERT OPERATING SYSTEM

It was essential in converting RBCS from the UNIX operating sys-
tem to the MERT operating system to make as few application
changes as possible; RBCS was already running so that only
modifications necessary for enginering the production system, as
opposed to a field evaluation, were incorporated. Confounding this,
however, was a desire to upgrade to the latest UNIX features such as
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(i) the latest C compiler, (ii) "standard" semaphore capability, (iii)

"standard" multifile magnetic tape driver, and (iv) the Bourne
shell.5 There was also, of course, a desire to investigate and exploit
those MERT features that were expected to yield performance
inprovements.

The conversion was carried out over a period of 3 to 4 months by
a team of three people. As expected, the major changes took place
in the I/O routines, including (i) the CRT driver, (ii) the CRT utility

programs, (iii) the magnetic tape utilities, and (iv) the RBCS data
base manager, which allocated physical disk space directly. The pro-
cedure was straightforward and algorithmic, albeit a tedious process.
Some manual steps were required, so that the conversion was not
totally mechanized, but since the four basic subsystems mentioned
above were edited, tested, and debugged in only 3 to 4 months, the
effort was considered minimal.

At this point, an attempt was made to convert the remainder of
the RBCS data base manager subsystem to the MERT public library
feature.4 Under the UNIX operating system, the RBCS data base
manager routines were link edited into a substantial number of
application utilities at compile time. Any changes required approxi-
mately two weeks for recompilation of the affected programs (the
subroutine dependencies were kept in an administrative data base).
It was felt, during the conversion planning effort, that the most
common file manager routines were taking an inordinate amount of
space; approximately 10 to 12K bytes duplicated among on the order
of 100 routines; each with different virtual addresses for these com-
mon routines. The MERT public library feature appeared to solve
the common space problem by allowing the most frequently used
routines to be placed in a shared text segment. As of this writing,
the basic system without the public library feature has been com-
pleted. Work is still underway to convert the RBCS data-base
manager routines to the new MERT public library format and should
be completed in a few months.

With the confidence gained by the initial success, work proceeded
on obtaining compatibility with the latest version of the C language
compiler, on the standard I/O library, and on engineering the
manufacture of the production RBCS system.

The program which proved most difficult to convert was the "tran-
saction processing" module. This large, complex body of code is
responsible for (i) restricting write-access to the data base manager
to avoid simultaneous updates and (ii) maintaining internal con-
sistency between successive states of the numerous RBCS files.
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These functions require considerable interaction with other shell
procedures, generally on an asynchronous basis. Since the system
was written under the UNIX file manager, the transaction processing
module carried out this interaction through specially created files
with a large number of "open" and "close" operations, characteristic
of a time-sharing system. The MERT file manager restricted the
number and frequency of these operations with the result that con-
siderable effort was necessary first to analyze the problem and then
to carry out the necessary design changes.

V. STARTING WITH THE MERT OPERATING SYSTEM

Probably the most important reason for using the MERT operating
system, in addition to the above-mentioned architectural advantages,
is the interprocess communication capabilities; in particular, shared
segments, public libraries, and guaranteed message integrity.4

In Fig. 3a, the first module represents a "data base read" module,
the second a "CRT interactive" package, the third a "data
verification" module, and the fourth a "data base write" module.
Fig. 3a illustrates the necessary pipeline flow of data using the UNIX
"pipe" mechanism via the shell. Reverse flow of data (from
cooperating modules, for example) is not possible at the shell level,
and control flow is difficult without some form of executive. Furth-
ermore, in a heavily loaded system, the pipes degenerate rather
quickly to extra disk I/O; the result is a total of 4 reads and 4 writes
for a simple data base transaction.

A typical transaction for the architecture illustrated in Fig. 3a
would be for a keyboard query (module 2) for a particular data base
record (module 1) to be displayed (module 1). Following local
modification of the record using CRT masks, a request to send the
record to the data base (module 4) is made. Before sending the
record to the data base manager, the sanity check process (module
3) verifies the "within record" data integrity for such violations as
nonnumerical data or illegal data. If the data check is unsuccessful,
then module 2 should be activated to blink the fields in error as
indicated by data obtained from module 3. Control flows alternately
between modules 2 and 3 until either the record passes the data
integrity check or local management overrides the process for
administrative purposes. Only at that time would the record proceed
to the data base write process (module 4). With a shell syntax, it is
only possible for data to flow left to right; reverse flow requires files
specifically allocated for that purpose.
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Figure 3b illustrates the MERT approach with a single shared-data
segment used for a minimum 1 read and 1 write. Each cooperating
process is shown with a virtual attachment to the shared data seg-
ment indicating access to the data without disk I/O. Thus, reverse
flow of data is accomplished by each process writing into the shared
segment at any given time. Flow of control and process synchroni-
zation is accomplished in the example shown by the upper process
called a "Command and Control Module" (ccM), in RCMAS. The
shared data segment can be as large as 48K bytes in user space with
MERT support provided so that sibling-related or even nonsibling-
related processes can be adequately interfaced or isolated as the case
requires without system modifications on our part.

The large user segment size allows individual RBCS or RCMAS tran-
saction data to be supported with a minimum of disk I/O. The mes-
sage capability, along with the segment management routines, allows
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the data to remain in a segment; the processes modify the single copy
of the data instead of passing the data around through pipes or files,
as with the UNIX operating system implementation shown in Fig. 3a.

Rather than write an elaborate C module for the "Command and
Control" process of RCMAS, the latest version of the shell written by
S. R. Bourne5 was extended to include the MERT interprocess com-
munications primitives.8 In particular, the "Command and Control
Module" for RCMAS has been implemented entirely by means of one
master shell procedure and several cooperating procedures. This has
the advantage of easier readability to nonprogrammers, flexibility in
the light of frequent changes, and ease of debugging (since any shell
procedure can be run interactively from a terminal, one line at a
time). Measured performance to date has not indicated any penalty
great enough, from a time or space viewpoint, to necessitate rewrit-
ing the shell procedures as C modules.

It is clear from observations of RCMAS performance and discus-
sions with interested people that considerably more flexible architec-
tures are possible than the simple "star" network illustrated in Fig.
3b. However, it was felt that such a simplified approach was neces-
sary to retain administrative control during the initial design and
implementation stages until sufficient familiarization was achieved
with asynchronous processes served by the elaborate MERT interpro-
cess primitives.
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UNIX Time-Sharing System:

The Network Operations Center System
By H. COHEN and J. C. KAUFELD, Jr.
(Manuscript received January 27, 1978)

The Network Operations Center System (NOCS) is a real-time,
multiprogrammed system whose function is to survey and monitor the
entire toll network. While performing this function, the NOCS supports
multiple time-shared user work stations used to interrogate the data base
maintained by the real-time data acquisition portion of the system. The
UNIX* operating system was chosen to support the NOCS because it could
directly support the time-shared user work stations and could, with the
addition of some interprocess communication enhancements and a fast
access file system, support the real-time data acquisition. Features of the
UNIX operating system critical to data acquisition include signals, sema-
phores, interprocess messages, and raw I/O. Two features were added,
the Logical File System (LFS), which implements fast application process
access to disk files, and the Multiply Accessible User Space (MAus),
which allows application processes to share the same memory areas.
This paper describes these features, with emphasis on the manner in
which UNIX operating system features are used to support simultaneously
both real-time and time-shared processing and on the ease with which
features were added to the UNIX operating system.

1. INTRODUCTION

This paper explains how the Network Operations Center System

* UNIX is a trademark of Bell Laboratories.
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systems and the NOCS as the nodes (see Fig. 1). The NOCS, which
executes on a Digital Equipment Corporation PDP-11/70 minicom-
puter system, is physically co-located with the DTP. This network is
synchronized in time to utilize telephone traffic data accumulated
periodically (every 5 minutes) by data collection systems. When an
E/NM detects a problem or control on a trunk group or office of
potential concern to the NOCS, the data describing that problem or
control are sent to the DTP which passes them on to the NOCS. In
addition, this network is used to pass reference data describing the
telephone network configuration to the NOCS.

2.1.4 NOCS data

During the first 150 seconds or so of each 5-minute interval, the
NOCS can receive as many as 6000 dynamic data messages, i.e., data
describing the current state of the network, through the link con-
necting the NOCS and DTP computers. About 2000 of these mes-
sages concern the trunk status data needed continuously by the
NOCS in order to find spare capacity for alternate routes. Most of
the rest are trunk group or office data messages which occur only
when a trunk group or office is overloaded beyond its design capa-
city. Each message contains identity information and several pro-
cessed traffic data fields, which are retained for several intervals in
files in the NOCS data base. Dynamic data messages which give
trunk group control, code block control, and office alarm status are

such as a large metropolitan area, a state, telephone operating company, or switching
region. It is expected that 30 or more E/NMS will blanket the U.S. telephone network
by the early 1980s.
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received asynchronously in time by the Nocs, and are retained in
the NOCS data base until a change in state occurs.

The telephone network configuration of interest to the NOCS is
specified by reference data describing approximately 300 toll switch-
ing offices and up to 25,000 of their interconnecting trunk groups.
All the trunk group reference data needed by the NoCS are derived
algorithmically from the reference data base of the E/NMs and are
transmitted to the NOCS via the DTP. Hence, reference data mes-
sages that contain updates to the network configuration are received
at irregular intervals from E/NM systems.

2.1.5 NOCS data base

The NoCS data are arranged into a data base consisting of several
hundred data files containing all the reference data necessary to
describe the network configuration and the dynamic data needed to
reflect the current state of the network. Some of the files are
record-oriented, describing all the information about individual data
base entities such as an office or trunk group. Others are relational
in nature, containing sets of related information such as all the
trunk groups between geographic areas or all the trunk groups with
the same type of problem condition. This arrangement allows com-
plex data inquiries to be answered quickly by combining relations
with a standard set of operations. It also allows per-entity data to be
accessed very quickly by a simple indexing operation into a file.

2.2 NOCS design

2.2.1 Philosophy

The UNIX operating system was selected as the basis for design to
take advantage of prior experience with that system. During the
design phase, every attempt was made to use existing UNIX operating
system features to implement the required NOCS functions and to
minimize the number of modifications necessary to the UNIX operat-
ing system. As a result of this philosophy, the final set of features
needed in the operating system by the NOCS included only two
features not in the standard UNIX system. If the UNIX operating sys-
tem modifications had turned out to be too extensive to be imple-
mented locally, another operating system would have been investi-

gated.
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2.2.2 NOCS subsystems
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RAS/CRTS

DIS/CRTS

The application software for the NOCS is organized along the lines
of functional requirements into the major subsystems listed below
(for graphic representation, see Fig. 2). Each of these subsystems
consists of one or more UNIX processes.

(i) The Message Processing Subsystem (MPs) receives all incom-
ing data from the DTP. Some incoming data from the DTP are
reference data messages which are not handled in real-time.
These reference data messages are passed to the Reference
Data Update System (RDUS), a background process that main-
tains the NOCS reference data base. The remainder, dynamic
data messages, are handled by the MPS and are entered into
the NoCS data base. If an "immediate notification" request
has been made for a data item by some other NOCS subsys-
tem, an interprocess message containing that data item is sent
to that subsystem. When all the dynamic data for an interval
have been received, the MPS notifies all interested subsystems
of the availability of new data, updates the data indirection
pointers to make the new data available, updates the wall
display to indicate the latest network problems, and begins
printing the latest data reports.
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GO The Reroute Assist Subsystem (RAs) analyzes new data each
5-minute interval to determine if there are any interregional
final trunking problems in the network that are possible candi-
dates for traffic reroutes. If any are found, RAS looks through
the available trunk data to determine if spare capacity exists to
relieve the problem. Any problems and suggested solutions
are displayed to the network managers through CRT terminals.
The RAS also requests the MPS to notify it immediately if any
further data are received relating to an implemented reroute.
If such notification is received, the RAS immediately examines
the data given it by the MPS to determine if any changes
should be made to that reroute.

(iii) The Data Inquiry Subsystem (Dis) provides the network
managers with access to the NOCS data base from CRT work
stations. From any of these work stations, a manager can
display network data in a variety of ways. Each way presents
the data from a unique perspective in a rigorously formatted
and easily interpreted manner. In addition, CRT data entry
displays are also used in maintaining the nontrunking portions
of the reference data base.

(iv) The Reference Data Update Subsystem (RDUS) processes all

changes relating to the configuration of the network. Inputs

to this system can come from the E/NMs via the MPS via the

DTP, CRT displays or as bulk input through the UNIX file sys-

tem. It uses these inputs to create and maintain the reference

data base needed by the MPS, RAS, and DIS to effectively inter-

pret, analyze, and display the dynamic data.

(v) The Data Access Subsystem (DAs) handles all requests for
information from the NOCS data base. The DAS consists of a
large set of subroutines that provide access to the NOCS
dynamic and reference data files. Hence, in the UNIX sense,
DAS is not a process but a set of routines loaded with each
UNIX process that accesses the Nocs data base. Because mul-
tiple processes simultaneously need quick access to the same
files for both reading and writing, the DAS maintains a large
area of common data and synchronization flags, which is
shared by all NOCS processes using the DAS.

2.2.3 Operating System Problem Analysis

2.2.3.1 File system requirements. The initial processing of data
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messages by the MPS involves a trunk group identity translation, a
possible wallboard indicator translation and storage of the data items
contained in the message. A simple analysis of the relationship
among message content, the expected message volume, and the data
display requirements reveals that the NOCS must be able to do at
least 12,000 translations on the set of incoming data messages and
place them into the correct disk files in an elapsed time of about 150
seconds. Potentially, then, a 'very large number of disk accesses are
possible unless careful attention is given to the algorithms and data
layouts used. Thus, a data storage mechanism is required with as
little overhead as possible from the point of view of system
buffering, physical disk address calculation, and disk head position-
ing. This simple analysis does not take into account the substantial
number of disk accesses necessitated by DIS, RAS, and other NOCS
background processes.

In addition, analysis of data inquiry displays reveals that some DIS
processes would need simultaneous access to more data files than
the UNIX file system allows a process to have at one time. There-
fore, in order to hold response times down, some mechanism for
overcoming this limitation without numerous time-consuming open-
ing and closing of files is necessary.

2.2.3.2 Scheduling requirements . The application processes in the
NOCS impose three types of scheduling criteria on the UNIX operating
system. First, the MPS and RAS are required to analyze the incoming
data in "near" real-time to provide network managers with timely
notification of potential problems and recommended solutions.
Since the MPS is responsible for collecting and processing incoming
data, it must execute with enough frequency and for long enough
periods to prevent data overruns and/or delays. Second, the CRT
work stations, at which network managers interact with the DIS,
have classical time-share scheduling needs. Third, background pro-
grams, exemplified by the processing of reference data messages by
RDUS, require neither real-time nor time-share scheduling.
Processes of this third type can be scheduled to run whenever no
processes of the real-time or time-share variety are waiting to run.

2.2.3.3 Interprocess communication requirements . Several types
of interprocess communications mechanisms are needed by NOCS
subsystems. First, the MPS must send interprocess messages to
other NOCS processes upon reception of "immediate notification"
requested data. These data must be passed quickly but are not large
in volume. The use of an interprocess message facility implies that
the process identifications (process IDs) assigned by the UNIX
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operating system* be communicated among processes. Another
mechanism mentioned in the MPS description was the need to be
able to notify other processes of the availability of new data. This
mechanism must be able to interrupt the actions of the target pro-
cess so that any necessary processing can occur before resuming the
interrupted activity. Last, it was also foreseen that the implementa-
tion of the DAS would require multiple processes to share their
knowledge of the state of files in the data base and would require a
mechanism for synchronization and protection of these files.

2.2.4 Operating system problem solutions

2.2.4.1 File system. The file system requirements led to the con-
clusion that the standard UNIX file system was inadequate for the
NoCS. However, the raw I/O facility in the UNIX operating system
has the following features:

(i) Control of data block placement within the raw I/O area.
(ii) Transfer of data directly from disk to user buffer.

(iii) Access to a large contiguous disk area through a single UNIX
file.

These features provide precisely the capabilities required by the
NOCS in a file system. Hence, they were used as the foundation for
a new type of file system, known as the Logical File System (LFS),
which was added to the UNIX system.

The LFS controls logical file to physical disk address mapping and
the allocation of space on the disk. The LFS can be requested by the
user to read or write 512-byte sectors of a file, create or delete a file,
or copy one file to another. It keeps all files contiguous to simplify
logical to physical address mapping and minimize disk head move-
ment. Also, it transfers data directly from disk to user buffer areas.

The entire NoCS data base is implemented using the LFS. Since all
access to data from NOCS processes is through DAS subroutines, the
DAS has total semantic responsibilities for the contents of the files
which are in the LFS. The DAS remembers what NOCS data are in
which file, the size of the file in bytes, and the current usage status
of the file.

2.2.4.2 Scheduling. The NOCS scheduling requirements are such
that the standard UNIX facilities can handle them. All real-time

* The process identification is the only way of uniquely identifying a job once it has
been started by the UNIX system. The message mechanism uses process
identifications as its addressing mechanism.
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processes are given a base priority that is higher than any time-share
process. Thus, in the case of competition for the processor, the
real-time processes will be scheduled first. Within the real-time
priority range, the MPS is given the highest priority to ensure that it
will always be able to process the incoming data. Within the
time-share priority range, the CRT work stations assigned to reroute
assist interaction are given the highest priority. Finally, background
processes, like RDUS, are given lower priority than any time-share
process to ensure that background processes will only be run if no
other work needs to be performed.

2.2.4.3 Interprocess communications . The final design for the
NOCS system relies on the following interprocess communication
mechanisms:

(i) A mechanism for communicating process identifications.
(ii) An interprocess message facility for passing small amounts of

data between unrelated processes.
(iii) An interrupt mechanism for interprocess notifications of

events.
(iv) A synchronization/resource protection mechanism.
(v) A mechanism for sharing large amounts of data between

processes.

Given the existence of item (i), the UNIX interprocess message
facility can handle item (ii) and the UNIX signal facility can handle
item (iii). However, items (i), (iv), and (v) required additions to
the UNIX system. Item (iv), the synchronization/protection mechan-
ism, was solved by expanding the semaphore capability of the UNIX
system. Semaphores existed in the UNIX system, but processes were
restricted to five semaphores, and about 400 were needed by the
DAS simultaneously to effectively use the LFS capability. One way in
which item (v), sharing of data, could be handled by the standard
UNIX system would be to establish a file (either in LFS or the UNIX
file system) whose contents were read by each process when neces-
sary. In addition, a series of semaphores would have to be estab-
lished so that processes could have exclusive access to this file for
the purpose of changing it. A system for data sharing of that design
would have many problems in terms of simplicity, synchronization,
and speed, so it was decided to make a major addition to the UNIX
operating system known as MAUS, or Multiply Accessible User
Space. MAUS allows processes to directly share large portions of
their data space. MAUS also provides a solution for item (i).
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2.2.4.4 Other. A variety of other problems were encountered,
most of which were solved without any modifications of the UNIX
operating system. However, the following other additions were
made to the operating system:

(i) A DAlI UNIBUS link driver for high-speed interprocessor com-
munications. This is used for the DTP-to-NOCS communica-
tions link.

(ii) A DH1I asynchronous line multiplexer driver for half-duplex

DATASPEED° 40 terminals.

(iii) Disk I/O priorities so that the priority of a disk request
matches the priority of the process needing the disk.

All the above modifications were necessary, but considered
sufficiently straightforward to need no further explanation.

Ill. UNIX FEATURE ADDITIONS

The Logical File System and the Multiply Accessible User Space
features were implemented for the NoCS. These features are now
available and being used by other UNIX-system-based application sys-
tems needing real-time operating system features.

3.1 LFS ( Logical File System)

The LFS is a mechanism that enables processes to use the raw I/O
facility in the UNIX operating system without having to manage the
disk space within the disk area reserved for raw I/O. It establishes a
file system oriented around 512-byte blocks within which it can
create, write, read, and delete files.

3.1.1 Overview

The file system which the LFS provides sacrifices a number of
features of the standard UNIX file system for simplicity of implemen-
tation. For instance, the standard UNIX file system provides access
protection at the individual file level; in the LFS, access protection is
only provided once for the set of files managed by the LFS. Another
difference is that file names in the standard UNIX file system are
character strings which can be descriptive of file contents; in the
LFS, file names are numbers.

The important features of the LFS are listed below.
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(i) Treatment of the LFS as a single UNIX file which, when
opened, allows access to all LFS files.

(ii) File names that are indices into an array which lists the start-
ing block and size of each file, thereby minimizing the time
required to "look up" the physical mapping of a file.

(iii) Contiguous space allocation for all files, thereby minimizing
the time required to copy file data into memory.

(iv) Integrated file positioning with read or write, thereby eliminat-
ing separate file positioning system calls which are necessary
for accessing normal UNIX files.

(v) Adherence to the UNIX principle of isolating the application
processes from the vagaries of the physical device - with the
restriction that any physical device used for the LFS must
appear to have 512 bytes per block.

In order to access the files managed by the LFS, the unique UNIX
file name associated with the LFS must be opened using the special
routine Ifopen . The routines lfcreate , lfwrite, Ifread , and Ifdelete
then can be used by processes to create, write, read, and delete files
within the LFS. Each of these routines expects the LFS file number
as an argument. In addition, Ifcreate expects to be passed the size
of the file being created; Ifwrite and Ifread expect a data buffer
address, data buffer size, and starting position in the file.

The LFS has one additional feature which the NOCS software uses.
The Ifswitch routine takes two LFS file numbers as arguments and
switches the physical storage pointers for the files. This feature
enables files to be built in an offline storage area and then be quickly
switched online; it is especially useful during data base updates.

3.1.2 Implementation

A restriction existed in the UNIX operating system which had to be
eliminated before the LFS could be effective. The interface between
the LFS and the disk is through the raw I/O routine, physio. phy-
sio, in the standard UNIX operating system, allows only one raw I/O
request to be queued for each device; since almost all NOCS
processes make raw I/O requests via the LFS, this restriction would
have resulted in a severe bottleneck. The remedy was to allow phy-
sio to queue raw I/O requests for different processes by providing a
pool of raw I/O headers analogous to the pool of system buffers
available for standard UNIX file I/O.

One code module containing the LFS routines was added to the
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UNIX operating system. Of course, the module containing physio
was modified as outlined above. In addition, the physio
modification requires minor changes in several device-handling rou-
tines. Also, several data structures were modified to allow for the
pool of raw I/O headers and to define the LFS file system structure.
In total, the modifications necessary to install the LFS required about
300 lines of C code to be added or modified.

3.2 MAUS (Multiply Accessible User Space)

MAUS (unpublished work by D. S. DeJager and R. J. Perdue) is a
mechanism that enables processes to share memory. It is not neces-
sary for the general time-sharing environment, but for multipro-
gramming real-time systems such as NOCS it is almost essential.

3.2.1 Overview

MAUS consists of a set of physical memory segments which will be

referred to as MAUS segments; a unique UNIX file name is associated

with each MAUS segment. A MAUS segment is described to the sys-

tem by specifying its starting address (a 32-word block number rela-

tive to the start of MAUS) and its size in blocks (up to 128 blocks or

4096 words). The physical memory allocated for MAUS starts

immediately after the memory used by the UNIX operating system

and is dedicated to MAUS. Any process may access MAUS segments.

A process may access a MAUS segment in two ways. The pre-

ferred MAUS access method is to make the MAUS segment a part of

the process's address space by using a spare segmentation register.

This method can be used by any process which has at least one

memory segmentation register left after being loaded by the UNIX

operating system.* If the process has no free memory segmentation

registers, then access to the MAUS segment may be obtained under

an alternate method which uses the standard file access routines

such as open , seek , read , and write . The alternate method is

slower than the preferred method and has potential race problems if

more than one process tries to write data into a MAUS segment.

* Each process has a fixed number of memory segmentation registers available for its
use. For processes running on a Digital Equipment Corporation PDP-11/70 under the
UNIX operating system, eight memory segmentation registers are available for map-
ping data and MAUS. Each segmentation register is capable of mapping 4096 words,
i.e., one MAUS segment. One of these registers is always used for the process stack
and at least one other is used for the data declarations within the process. Thus, a
maximum of six segmentation registers are available for accessing MAUS.
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3.2.1.1 Preferred access method. To access a MAUS segment by
the preferred method, a process must first obtain a MAUS descriptor
using the MAUS routine getmaus in a manner similar to the stan-
dard UNIX open. The UNIX file name associated with the MAUS seg-
ment and the access permissions desired are given in the getmaus
call. getmaus makes the necessary comparisons of the access
desired with the allowable access for the process making the call and
returns either an error or a MAUS descriptor which has been associ-
ated with the requested MAUS segment. A process is allowed to
have up to eight MAUS descriptors at the same time. When a valid
MAUS descriptor is given to the enabmaus routine, a virtual
address, which may be used by the process to access data within
MAUS segment associated with the MAUS descriptor, is returned.
This virtual address is also used to detach the MAUS segment with
the dismaus routine. The MAUS descriptor can be deallocated using
the freemaus routine. Obtaining a MAUS descriptor is very slow
relative to attaching and detaching MAUS segments; thus processes
which cannot simultaneously attach all the MAUS segments they
need to access can still rapidly attach, detach, and reattach MAUS
segments using MAUS descriptors. Any number of processes can
have the same MAUS segment simultaneously attached to their vir-
tual address space.

3.2.1.2 Alternate access method. To use the alternate access
method, the UNIX file name associated with the MAUS segment
desired is opened like any normal UNIX file. The file descriptor
returned can be used by the read or write routines to access the
MAUS segment as if it were a file.

3.2.2 Implementation

One code module containing the MAUS routines and some minor
modifications to several existing functions within the UNIX operating
system were all that was necessary to install MAUS. In addition,
several minor modifications were made to UNIX data structures to
store MAUS segment descriptions and MAUS descriptors. In total,
less than 150 lines of code were added or modified. In the final
analysis, the most difficult part of the MAUS implementation was
arriving at a design which was compatible with existing interfaces
within the UNIX operating system.

IV. STANDARD UNIX FEATURE USAGE

The standard UNIX system provides a complete environment for
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the entry, compilation, loading, testing, maintenance, documenta-
tion, etc., of software products. It is impossible to categorize all the
ways in which this environment aided in the design and develop-
ment of the NOCS; however, a few examples are illustrated here.

4.1 Development and testing

The same version of the UNIX operating system is used both for
Nocs development in the laboratory and for the Nocs application.
In fact, because of the versatility of the UNIX system and the design
of the NOCS software, most of the NOCS system is left running con-
tinuously during software development. New versions of NOCS sub-
systems can be installed without the need for restarting the entire
system. In essence, a continuous test environment exists so that
developers can integrate their programs as soon as module testing is
completed without having to schedule special "system test" time.

4.2 Software administration

The NOCS software is maintained in source form on two UNIX file
systems. One of these file systems is mounted read-only and may
not be modified by software developers; the other initially contains a
copy of the first and is used for software development. Upon com-
pletion of a successful development milestone, an updated version
of the software is moved to the read-only file system by a program
administrator and a new development file system is created. Stan-
dard UNIX utilities are used to keep track of changes between the
read-only and development file systems.

In order to generate the NoCS binary from the source, UNIX shell
procedures have been developed. There is one "build" procedure
for each NOCS subsystem. The procedures are part of the NOCS
software and are administered in the same manner as the rest of the
NOCS software. The structural similarity between the read-only and
development file systems allows the complete testing of software
"build" procedures before they are copied to the read-only file
system.

4.3 System initialization

The standard UNIX init program is used to start the NOCS func-
tions. Each NOCS process is assigned to a run level or to a set of run
levels. When init is told, by an operator, to enter a particular run
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level, the NOCS processes assigned to that run level are started. The
assignment of processes to run levels is made in such a way that
critical NOCS processes may be isolated both during development and
in the field for testing.

4.4 Documentation

All Nocs documentation is done under the UNIX system. This
documentation consists of a user's manual which describes the
inputs and outputs for the system and a developer's guide which is a
description of the NOCS software. The nroff UNIX program along
with Nocs-developed nroff macro packages is used to format the
documentation for printing. The text is entered using the UNIX ed
program and is stored in standard UNIX files.

V. CONCLUSIONS

The NOCS system has real-time multiprogramming requirements
that make operating system demands very much counter to the basic
UNIX time-share philosophy. However, these demands were met
quite readily with some feature additions because of the adaptability
and generality inherent in the UNIX operating system. The available
scheduling parameters were flexible enough to handle the three
kinds of scheduling demands; "near" real-time, time-share, and
background, imposed on the UNIX operating system by the NOCS.
The interprocess communication mechanisms were rich and varied
enough that only one addition was necessary to provide all the
features needed by NOCS. The UNIX operating system was modular
enough so that a completely new kind of file system was interfaced
in a very short time with almost none of the timing bugs that might
be expected in a typical operating system. The total UNIX environ-
ment provided software tools to support the complex development
effort needed to implement the NOCS. Finally, the use of the same
operating system for both development and application certainly
minimized friction between the coding and testing phases of
development and allowed the smooth integration of all system func-
tions.
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